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This paper reviews the main coalition formation tools for achieving collaboration inside 
agent societies. We adopted a computational approach for our study, as automated tools are 
required for a-priori simulation of organizational design. We presented coalition formation 
as a 3-step process. Algorithms for coalition structure generation are presented. Regarding 
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vestigated. We exemplify the usage of the theoretical tools by applying them on an example 
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Introduction 
The proliferation of computer systems led to 
a new conception about how computer or 
non-human entities might work together. The 
concept of “open-systems” groups together a 
large number of systems of different design 
that can interact and cooperate in order to ac-
complish some specific tasks. Given the 
broad range of tasks that such systems should 
address, flexible patterns of communication 
and cooperation are required. Multi-agent 
systems represent a modern approach for 
modelling so-called open systems. Although 
there are situations where an agent can oper-
ate usefully by itself, the increasing intercon-
nection and networking is making such situa-
tions rare. In the usual state of affairs, agents 
interact with other agents [3]. When design-
ing multi-agent systems or societies of 
agents, the society engineer should design the 
rules (norms) that agents should accomplish 
in order to behave properly and to be ac-

cepted in the society. 
These statements are valid also for designing 
interaction in human organizations. In the 
last years, human organizations are modelled 
and simulated more and more with agent sys-
tems and new interaction patterns are a-priori 
evaluated through computer-based simula-
tion. For example, virtual organizations pro-
vide a means of bringing together autono-
mous stakeholders in a dynamic fashion in 
order to address a specific problem [2]. In 
this context, we consider that the topic of 
studying interaction patterns inside agent sys-
tems is of great interest. 
Our main study concern is related with 
mechanisms used to enable collaboration in-
side open systems with heterogeneous 
agents. One means towards collaboration is 
to impose strong rules over the agents’ be-
haviour. But, considering such an approach, 
agents will perform their tasks because they 
are required, and they could not be happy 
with their achievements. Therefore, agents 
will have incentives to leave the society or to 
oppose resistances to these enforcing rules. 
We think that such an approach is worth for 
consideration, but is more suitable for com-
putational cooperation-based decision-
making systems, with agents without beliefs 
and desires. 
When dealing with self-interested goal-
directed agents, like humans, other ap-
proaches need to be considered for achieving 
collaboration. We described [9] some set-
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tings like voting, auctions, bargaining and 
market mechanisms in order to argue that 
some beneficial characteristics of the society 
can be achieved even when imposing weakly 
enforcing rules over self-interested heteroge-
neous agents. In this paper, we will review 
and describe coalition-formation techniques 
used for studying collaboration inside multi-
agent systems. Coalition formation studies 
how agents can engage voluntarily in coordi-
nation, what makes them to keep the coali-
tion. The coalition formation research ques-
tion can be stated as follows [5]: if each 
agent of a society has its own goals, how do 
agents locate other agents with whom they 
can beneficially collaborate and how they 
can fairly share the joint gain that accrues to 
the coalition? With respect to virtual organi-
zations, coalition formation tools can be em-
ployed for modelling the operation phase of a 
virtual organization. Therefore, coalition 
formation stays at the foundation for estab-
lishing which partners in a society will work 
together for a task or how the operational 
structure will be re-modelled during the life 
of the organization. 
We will investigate the activities that agents 
have to perform for establishing coalitions. 
We will analyze some proposed algorithms 
for determining possible solutions for the 
problem of establishing the operational struc-
ture of a society of agents. Regarding the 
payoff division inside a coalition, we will de-
scribe, exemplify and evaluate three solution 
concepts: the core concept [8], the Shapley 
value [1] and the kernel of the coalition [6]. 
These concepts are based on the cooperative 
game theory formalization, and allow one to 
simulate new designed mechanisms inside 
computational heterogeneous agent systems. 
We will exemplify the usage of those con-
cepts by applying them on a task distribution 
and realization problem. The main contribu-
tion we be to reveal how such formal con-
cepts and computational algorithms can be 
employed for societal design, in order to a-
priori simulate and predict some outcomes of 
the new rules. 
The paper starts by introducing coalition 
formation as a topic of study inside agent 

theory. Section 3 will brief concepts from 
cooperative game theory that stay at the 
foundation of coalition formation. Section 4 
describes in detail activities for coalition 
formation, with focus on computational tools 
toward coalition structure generation and 
payoffs division. Section 5 takes and exam-
ple and shows the usage of the tools on a 
numerical setup. Section 6 concludes the pa-
per, drawing out the main results. 
2 Coalition formation within agent socie-
ties 
This section will present the most important 
properties of agent systems and will argue for 
the necessity of studying coalition formation 
within agent societies. 
An agent is an entity capable of independent 
(autonomous) action on its own behalf or the 
owner of the entity, figuring out what needs 
to be done to satisfy the design objectives of 
the society, rather than constantly being told 
[10]. In the context of computational multi-
agent systems, the above-mentioned entities 
are computer systems, but in the most gen-
eral case, the entities can be humans or or-
ganizations [7]. With respect to the weak no-
tion of agency [10], agents have at least the 
following characteristics: autonomy, reactiv-
ity, proactivity and social ability 
With respect to our goals of studying means 
of interaction inside organizations, the social 
property of agents is of our interest. In eco-
nomic organizations coalitions of agents are 
formed on the basis of increased gains of the 
agents. How the agents negotiate in order to 
engage in collaboration and how after that, 
they will decide how to split the new created 
value is the topic of coalition formation. Coa-
lition formation studies how agents can en-
gage voluntarily in coordination, what makes 
them to keep the coalition. The question is 
what algorithms or design alternatives we 
have for setting up such a society of agents. 
Formally, we want to partition the set of 
agents into subsets, each of which is a coali-
tion. The coalition gets a certain utility, 
which therefore, is divided among the mem-
bers of the coalition. With this respect, coali-
tion formation resides on the cooperative 
game theory concepts we will introduce fur-
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ther on the paper. 
Within our approach, we will consider com-
putational approaches for coalition forma-
tion. Computational approaches reside on al-
gorithms for establishing the coalition struc-
ture of the agents and the division of the 
value inside the coalition. With this respect, 
such algorithms must be [8] [2] 
• local executed: each agent should be able 

to execute the coalition formation algo-
rithm locally. Negotiation according to 
the algorithm should be totally decentral-
ized 

• anytime executed: after any regular ter-
mination of an arbitrary cooperative 
game in the considered environment, the 
coalition formation algorithm should out-
put a stable configuration as a solution of 
the game. 

Coalition formation mainly includes 3 activi-
ties [8]: 
• Coalition structure generation. This ac-

tivity includes all agent interaction per-
formed inside the system such that in the 
end, coalitions will be formed. Inside the 
coalitions, agents will coordinate their ac-
tivities, but agents will not coordinate be-
tween coalitions 

• Solving the optimization problem of each 
coalition. This activity means pooling the 
tasks and resources of the agents in the 
coalition and solving the joint problem. 
The coalition objective could be to 
maximize the monetary value, or the 
overall expected utility. In our problem 
setup, the objective function of each coa-
lition would be to maximize its utility. 

• Dividing the value of the generated solu-
tion among agents. In the end, each agent 
will receive a value (money or utility) as 
a result of participating in the coalition. 
In some problems, the coalition value the 
agents have to share is negative, being a 
shared cost. 

We will concentrate our discourse on coali-
tion structure generation and on value divi-
sion. We will trust the agents will accomplish 
their tasks well and, therefore, we will not in-
sist on the second phase of the coalition for-
mation process. 

3 Cooperative game theory concepts 
This section will provide the required game 
theoretical concepts for describing coalition 
formation activities. We used as references 
the reviews of E. Dani [3], M. Klusch [6], the 
lectures of M. Klusch for the course of Intel-
ligent Information Agents, Free University of 
Amsterdam, 2001, the teaching materials of 
Adam Brandenburger for the course of Game 
Theory and Business Strategy1, Stern School 
of Business, New York University.  
Given a system of agents (players) 

},...,,{ 21 naaaA = , a coalition is a subset AC ⊆ . 
A cooperative game vAG ,=  consists of two 
elements: 
• the set of players, A  
• the characteristic function specifying the 

value created by different subsets of the 
players in the game. The characteristic 
function is a function +→ RAPv )(:  that 
assigns to each coalition C  a value, 
which measures its utility achievable as a 
whole by cooperation among its mem-
bers. 0)0( =/v . })({ iav denotes the self-
value of a single agent coalition. )(Cv  is 
the worth of (the value created by) the 
coalition C . 

We say that the function v  is super-additive 
if for all disjoint coalitions K  and L  (with 

0/=∩ LK ) inequality (3.1) holds: 
)()()( LvKvLKv +≥∪  (3.1) 

In this case, the game is said to be super-
additive. If the above-mentioned inequality 
does not hold for all pairs of disjoint coali-
tions, the game is non-super-additive. 
The game is cohesive if, for every partition 

kSSS ,...,, 21  of A  with jiSS ji =//=∩ ,0 , ine-
quality (3.2) holds: 

∑≥
i

iSvNv )()(    (3.2) 

Each partition of A  (a set of non-empty dis-
junctive subsets AC ⊆ ) is called a coalition 
structure ℵ . For a coalition structure it is 
obvious that nm ≤=ℵ || . 
A game is symmetric if Aaa ji ∈∀ ,  symmetric 
agents, for every ℵ∈kC  not containing 

                                                 
1 http://pages.stern.nyu.edu/~abranden/ 
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agents ji aa , , equation (3.3) holds: 
}){(}){( ji aCvaCv ∪=∪   (3.3) 

The marginal contribution of player i  to a 
coalition S , denoted by S

iMC  or iMC  if the 
coalition S  is the grand coalition A , is the 
expression }){\()( iSvSv − , where }){\( iSv  
represents the coalition S  without player i . 
A payment configuration ),( ℵ= uPC  for the 
coalition structure ℵ  denotes a payoff distri-
bution RAPu →)(:  of coalition values in 

),( vA  to each agent, ),...,,;,...,,( 2121 mn CCCuuu . 
An allocation ),...,,( 21 nuuu  is said to be indi-
vidually rational if inequality (3.4) holds for 
every player i . The related payment configu-
ration is individual rational. 

})({ ii avu ≥   (3.4) 
A payment configuration is group rational if 

)()( AvAu = . 
A payment configuration is coalition rational 
if )()(, TvTuAT ≥⊆∀ . 
A payment configuration is locally coalition 
rational if )()(, TvTuCT k ≥ℵ∈⊆∀ . 
A payment configuration is Pareto optimal if 
does not exist 'u  such that ),...,1{ ni∈∀  ii uu ≥' . 
An allocation ),...,,( 21 nuuu  is efficient with re-
spect to a coalition C  if  (3.5) holds 

∑
∈

==
Ca

i

NOT

i

CvuCu )()(   (3.5) 

An allocation vector ),...,,( 21 nuuu  satisfies the 
marginal contribution principle if inequality 
(3.6) holds for all players i . It is obvious that 
an allocation that is individually rational and 
efficient satisfies the marginal contribution 
principle. 

ii MCu ≤   (3.6) 
With regard to cooperative game theory, a 
payment configuration represents a solution 
of the game. The solution is stable if the 
payment configuration is at least individually 
rational. The core concept, the Shapley value 
and the kernel are solution concepts for co-
operative games. We will analyze these dif-
ferent approaches as part of coalition forma-
tion activities. 
4 Coalition formation activities 
This section will describe some possible ap-
proaches for the first and the third phase of 

coalition formation. Therefore, we will re-
view formally some results regarding coali-
tion structure generation and some algo-
rithms for payoff division inside coalitions. 
Section 5 of the paper will compare the pre-
sented approaches using a classical example 
from the literature, showing the importance 
of these tools with respect to the operation 
phase of organizations. 
4.1 Coalition structure generation 
Research has focused more on super-additive 
games [6] [11]. In such games, coalition 
structure generation is trivial because the 
agents are best off by forming the grand coa-
lition where all agents operate together. It is 
argued that almost all games are super-
additive because, at worst, the agents in a 
composite coalition use solutions that they 
had when they were in separate coalitions 
[8]. Against superadditivity it can be argued 
with the costs of coalition formation. In order 
to generate a coalition, there might be com-
munication costs or antitrust penalties. Solv-
ing the optimization problem of the compos-
ite coalition may be more complex than solv-
ing the problems of the component coali-
tions. Therefore, under costly computation, 
component coalitions may be better off stay-
ing apart and not forming the composite coa-
lition. 
In games that are not super-additive the so-
cial welfare maximizing coalition structure 
varies, and coalition structure generation be-
comes non-trivial. The goal is to maximize 
the social welfare of the agents A  by finding 
a coalition structure such that [8]: 

∑
∈ℵ∈

=
CSS

S
CS

vCS maxarg*   (4.1) 

We can make the following notation: 
∑
∈

=
CSS

SvCSV )( , where )(CSV  represents the 

global social welfare of coalition structure 
CS . 
The problem is that the number of coalition 
structures is very large ( )|(| 2/||AAO ) and if the 
total number of agents is not too small, we 
cannot enumerate all possible permutations 
of agents. To solve this problem, we should 
perform a search trough a subset of coalition 
structures and pick the best coalition struc-
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ture seen so far. As a search problem, the 
coalition structure generation process can be 
viewed as a search on the coalition structure 
graph. The objective of the search, if the 
graph of evaluated structures has N nodes, 
would be to guarantee that the selected coali-
tion structure is within a worst case bound 
from optimal, i.e. 

)(
*)(
*
nCSV

CSVk =  is finite and as 

small as possible. If we denote by minn  the 
smallest size of N  that allows one to estab-
lish such a bound k , it was proved [8] that to 
bound k  it suffices to search the lowest 2 
levels of the coalition structure graph. With 
this search, the bound || Ak =  is tight, and the 
number of nodes searched is 1||2 −= An . No 
other search algorithm (than the one that 
searches the bottom two levels) can establish 
a bound k while searching only 1||2 −= An  
nodes. Figure 1 depicts the coalition structure 
generation graph for a problem with 4 agents. 
The result of Sandholm [8] guarantees us ob-

taining a worst case bound from optimum, 
without searching the whole graph. On the 
other side, this result shows that exponen-
tially ( 1||2 −= An ) many coalition structures 
have to been searched before a bound can be 
established. 
To reduce the bound rapidly, if there is time 
for more search, the same author [8] pro-
poses to continue with a breadth-first search 
of the graph starting from the top. Breadth-
first search expands the successors of a se-
lected node of the graph, evaluates each ex-
panded node according to the criteria func-
tion of the search and stores the nodes on a 
list of candidates. From the list of candidates, 
the algorithm selects the most promising 
node, according with the criteria function 
value. If the problem domain happens to be 
super-additive, the algorithm finds the opti-
mal coalition structure immediately. After 
searching level l , the bound k  is given by 
the equation (4.2). 

 
Figure 1 The coalition structure graph for a 4-agents world. 
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where 2
2
||

+⎥⎦
⎥

⎢⎣
⎢ −

=
lAh . 

V. D. Dang [2] produced an improved ver-
sion of the above-presented structure genera-
tion algorithm. After searching levels 1, 2 
and n  of the graph, instead of breadth-first 
searching one-by-one the levels kL  of the 
graph, he proposes to search only subsets of 
those levels. It should search the set of all 

coalition structures that have at least 3=k  
coalitions and at least one coalition whose 
cardinality is not less than ⎡ ⎤qqn /)1( − , with q  
running from ⎣ ⎦4/)1( +n  to 2. The author [2] 
proved that after one round of searching, the 
solution is within a finite bound 12 −= qb  
from optimal. More, the algorithm is an any-
time algorithm and is 37910  times faster than 
Sandholm’s algorithm [8] for a system con-
taining 1000 agents, with respect to small 
bounds. 
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Other algorithms were proposed for generat-
ing the coalition structure. Therefore we can 
have 
• Merging algorithm: i.e. breadth-first 

search algorithm from the top of the coa-
lition structure graph. This algorithm 
cannot establish any bound before it has 
searched the entire graph. This is because 
to establish a bound the algorithm needs 
to see every coalition and the grand coali-
tion only occurs at the bottom node. Vis-
iting first the grand coalition would not 
help much since at least part of level 2 
needs to be searched as well. 

• Splitting algorithm: i.e. breadth-first 
search from the bottom of the graph. This 
algorithm is identical with the algorithm 
of [8] till the 3rd level is reached. After 
the 2nd level, splitting was found to re-
duce the bound much slower than the al-
gorithms we presented above. 

We may notice that these algorithms use as 
criteria value function the global social wel-
fare and they are not concerned if agents in-
deed will wish to pursue in such a coalition 
structure. With respect to the behavior of 
self-interested agents, the payoffs division 
should validate if a coalition structure is fea-
sible or not. 
4.2 Payoffs division 
Payoff division strives to divide the value of 
the chosen coalition structure among the 
agents in a fair and stable way, so that the 
agents are motivated to stay with the coali-

tion structure, rather than move out of it. 
Several ways of dividing the payoff have 
been proposed. We will analyze the core 
concept, the kernel and the Shapley value. 
Payoffs division is of interest only in games 
with transferable utilities. 
4.2.1 The core concept 
The core of a characteristic function game 
with transferable payoffs is a set of payments 
configurations so that no subgroup is moti-
vated to depart from the coalition structure 
CS . Formally, given a game vAG ,=  and a 
payment configuration ),( ℵ= uPC  then the 
core is given by equation (4.3). 

)}()(),()(,|),{(),,( AvAuCvauACuvACore
Ca

=≥⊂∀ℵ=ℵ ∑
∈

 (4.3) 

Only coalition structures that maximize the 
social welfare can be stable in the sense of 
core, because for any other coalition struc-
ture, the group of agents would prefer to 
switch to a maximizing social welfare solu-
tion. 
In order to identify the core of a game we 
need to solve a set of inequalities, starting 
from the conditions of (4.3), from the indi-
vidual rationality restrictions of (3.4) and the 
efficiency restriction (3.5). Or, we can re-
place individual rationality and efficiency by 
considering the marginal contribution princi-
ple restrictions of (3.6). E. Dani [3] proposes 
the usage of linear programming for solving 
the resulting inequalities system. 

 
Figure  2 Transfer scheme algorithm for core payoff division 
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The core is the strongest concept in the coali-
tion formation. There are cases when the core 
is empty. In such games, there is no way to 
divide the social good such that the coalition 
structure to become stable. Another problem 

of the core is that the core may include mul-
tiple payoff vectors and the agents must 
agree which one to select. The often used so-
lution is to pick the nucleolus, which is the 
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payoff vector that is in the center of the set of 
payoff vectors in the core. 
If the number of agents is big, in order to de-
fine the core we have to solve and accom-
plish a big number of constraints from for-
mula (4.3). To reduce the cognitive burden of 
the agents that try to reach a payoff division 
in the core, we can use the algorithm of fig-
ure 2 (Wu2 in [8]). This algorithm converges 
to a solution in the core, starting from any 
initial payoff division. 
The choice of T  can be done at random or 
considering the coalition with the largest 

∑
∈

−
Ta

jT
j

uv  first. But there is no guarantee that 

a self-interested agent is motivated to follow 
the transfer scheme truthfully. 
4.2.2 The Shapley value 
In the core solution, an individual allocation 
fulfilled the individual rationality criteria and 
the marginal contribution principle. There-
fore, inside a coalition, a player is rewarded 
with an amount iu  such that iii MCuav ≤≤})({ . 
Therefore, the marginal contribution of a 
player restricts the amount she receives in-
side the coalition. 
But, the real contribution of the player to a 
coalition depends on the position of the 
player inside the coalition. This position 
might be the moment (the round) when the 
player joined the coalition or might be other 
formalism. Therefore, instead of computing 
the payoff for a player based on her marginal 
contribution (which is independent of the 
coalition formation algorithm), we should let 
better to reward the player with her expected 
contribution. This idea resides at the founda-
tion of the Shapley value. The Shapley value 
incorporates the property that gains from par-
ticipation at the coalition are balanced be-
tween participating players. 
Shapley value can be characterized axiomati-
cally. An agent ia  is called dummy if 

}{}{ ii aCaC vvv =−∪  for every coalition C that 
does not include ia . Agents ia  and ja  are 
called interchangeable if CaaC vv

ji
=∪ }{}){\(  for 

                                                 
2 L.S. Wu, (1977) A dynamic theory for games with non-

empty cores, SIAM Journal of Applied Mathematics, vol. 
32 

every coalition C that includes ia  and does 
not include ja . The axioms of the Shapley 
value are: 
• Symmetry: if ia  and ja  are interchange-

able, then ji uu =  
• Dummies: If ia  is a dummy, then 

}{ iai vu =  
• Additivity: for any two games with char-

acteristic functions v  and w , iu  in wv +  
equals iu  in v  plus iu  in w , where wv +  
is the game defined by the characteristic 
function CCC wvwv +=+ )(  

The value of equation (4.4) defines the 
Shapley value. This value fulfills the 3 axi-
oms stated above [8] [5]. The Shapley value 
can be interpreted as the marginal contribu-
tion of agent ia  to the coalition structure, av-
eraged over all possible joining orders. The 
joining order matters, since the perceived 
contribution of agent ia  varies based on 
which agents have joined the coalition before 
it. The Shapley value represents the expected 
contribution of the agent to the game. 

∑
⊆

−−
−−

=
AC

aCCi i
vv

A
CCAsv )(

|!|
)!1|(||)!||(|

}{  

     
 (4.4) 
The most remarkable properties of the 
Shapley value are that it always exists and it 
is unique, while the core solution does not 
guarantee either of these proprieties. The 
Shapley value is Pareto efficient as the entire 
value of the coalition structure gets distrib-
uted among the agents. The Shapley value 
guarantees that individual agents and the 
grand coalition are motivated to stay with the 
coalition structure. The Shapley value is the 
sole value function that fulfils the balanced 
contribution principle, accomplishing some 
ethical requirements for a possible solution. 
A weak point is that it does not guarantee 
that all subgroups of agents are better off in 
the coalition structure than by breaking off 
into a coalition of their own. Another prob-
lem with the Shapley value is that marginal 
contributions of each agent have to be com-
puted over all joining orders and there are 
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|!| A  joining orders. One can guarantee each 
agent an expected payoff equal to the 
Shapley value by randomizing the joining 
orders. A trusted third party needs to carry 
out the randomization since each agent has a 
strong preference over different joining or-
ders. Zlotkin [11] proposed a non-
manipulable protocol for finding a random-
ized joining order. Within this protocol, 
every agent constructs a random permutation 
of the agents, encrypts it and sends it to all 
other agents. Once an agent has received an 
encrypted permutation from every other 
agent, it broadcasts its key. These keys are 
used to decrypt the permutations. The overall 
joining order is determined by sequentially 
permuting the results. 
Contreras [1] proposed a method for finding 
the Shapley values based stable solutions to a 
CFG. Each agent a  has to perform the fol-
lowing steps: 
• compute the eigenvalue })({av  and 

)',( aaworth  for each Aa∈' . Send / receive 
these values to agents 'a  in the world. 

• compute the coalition values Cv  for each 
coalition C of the actual coalition struc-
ture, in the hypothesis that agent a  will 
join that coalition. The computed value 
will be 

∑∑
∈∈

−−=
Ca

a
Caa

C vCaaworthv })({
',

)2|(|)',(   

     
 (4.5) 
• compute the own benefit of joining a 

grand coalition A as Shapley value and 
own demand for payment 
( ),()( Aaworthasv − )) 

• form grand coalition with all other agents 
in a configuration )))((},({ AaasvA ∈  

)',( aaworth  represents the payment agent a  
receives if it engages in a coalition with 
agent 'a . By ),( Caworth  was denoted the 
payments to agent a  for items in coalition C . 
That is the sum of utilities of self and com-
missioned productions of a  in coalition C . 
All agents repeat this coalition formation 
process from step 2 until no more coalitions 
are possible. If no coalition is possible at a 
step, the agents look at the second partner, 

after that at the third one etc. Contreras [1] 
recommends dividing the accumulated utility 
in a coalition according with the formula 
(4.6): 

||

)'()(
)()( ','

C

avasv
avau Caaa

∑
∈≠

−

+=  (4.6) 

Therefore, it means that in the new coalition 
each agent will receive its value. The mar-
ginal utilities obtained by the coalition from 
the Shapley values of the agents that joined 
the coalition in the last round will we divided 
equally between the members of the coali-
tion. They proved that this payoff dividing 
scheme is efficient and individual rational in 
the case of super-additive games. With this 
algorithm, [1] computed the computation and 
communication complexity as being )2( 2nO n  
and )( 2nO . 
Regarding the above-mentioned algorithm, 
we may note that this is suitable for a general 
CFG environment. The grand coalition will 
not be necessarily formed. Even if common 
resources are shared, it does not mean that 
the agents will have access to them. 
A similar approach based on the Shapley 
values was considered in [5]. Instead of con-
sidering coalitions of multiple agents, this 
work is based on a 2 agents-auction process. 
That is at the beginning, no coalitions exist. 
In each round, agents pair each to others, 
based on the Shapley values. After forming 
coalitions of size 2, inside the coalition 
agents decide to name a “chief” of the coali-
tion. The “chief” of the coalition will further 
negotiate as the coalition is one agent. The 
following negotiation rounds are similar with 
the first round, as we can consider each coali-
tion as a simple agent. Within this approach, 
a new problem arises: how an agent will be 
selected as a chief of the coalition. And, after 
some round, when we need to select the new 
chief, how the agents that are “workers” in 
the old coalition will participate in the chief 
selection process. 
4.2.3 The Kernel approach 
The set of payments configurations of a co-
operative game where each pair of agent is in 
equilibrium is called a kernel (Davis and 
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Maschler3 in [6]). Formally, a kernel is a set 
}mequilibriuin),(,,|),{( jiji aaCaauK ℵ∈∈∀ℵ= , 

where the following concepts apply: 
• excess of a coalition ℵ∉C  with respect to 

an utility distribution ),( ℵu : 
CC uvuCe −=),(  

• surplus or strength of agent ka  over agent 
la  in the same coalition with respect to a 

payment configuration ),( ℵu : 
),(max ,, uRes RaRaRkl lk ∉∈ℵ∉=  

• agent ka  dominates agent la  in the same 
coalition with respect to a payment con-
figuration ),( ℵu  if lkkl ss >  and })({ ll avu >  

• a pair of agents ka  and la  in the same 
coalition ℵ∈C  is in equilibrium if 

lkkl ss =  or }))({()( lllkkl avuss =∧>  or 
}))({()( kklkkl avuss =∧<  

It was proved that the kernel solution has the 
following desirable properties: 
• it exists and is unique for every 3-agents 

game. 
• symmetric agents of some coalition in a 

given coalition structure get equal pay-
offs. 

• each kernel stable configuration is locally 
Pareto optimal in the kernel. 

In order to build the kernel, usually an algo-
rithmic iterative approach is considered. 
Such algorithms are based on transferring 
payoffs (utilities) between agents as they are 
leaving / entering new coalitions. We will 
present a basic algorithm for determining the 
kernel as in the discourse of M. Klusch [6]. A 
transfer schema is a sequence of configura-
tions )...,(),...,,( 1 ℵℵ iuu  transferring in each 
step i  positive side-payments α  among 
agents ka  and la  by the assignments of for-
mula (4.7). The computation of the side 
payments is done according with the princi-
ple of stability. 
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3 Davis M., Maschler M, (1965) The kernel of a cooperative 
game. Naval Research Logistic Quarterly, vol. 12 

A convergent transfer scheme iteratively 
computes for a given coalition structure ℵ  
and an initial payment configuration ),( 0 ℵu  
another payment configuration ),( ℵu  which 
is the kernel of the coalition structure. This 
convergent transfer scheme is determined by 
the mutual demand kld=α  for a pair of 
agents ka  and la  as an upper bound for the 
side payments. Formula (4.8) provides means 
of computing the mutual demand between 2 
agents. 
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Considering a sufficiently small relative error 
ε , an algorithm should terminate the itera-
tions in order to compute the transfer schema 
if condition (4.9) fulfils. 
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The algorithm converges after at most 
)/)((log2 εuren  iterations, with the complexity 

of )2( nnO  for each iteration. 
The difference between the kernel approach 
and the other game theoretical approaches 
(like the core approach) is that kernel ap-
proach provides with this transfer schema it-
erative algorithm for converging to the pay-
off division, while the core approach gives 
(predicts) how the division will look at the 
end, without giving an explanation of the 
process of reaching that division. The kernel 
concept is the first solution concept that pos-
sesses the desirable properties of symmetry 
and desirability (agents want to enter the so-
lution) once at a time. 
Unfortunately, the concept has also weak 
points. The original interpretation of the sur-
plus presumes that agents a  and 'a  compare 

)',( aas  and )',( aas  to see who could hope for 
more payoff in the same coalition based on 
the intensity of the feeling of individual util-
ity. Therefore, it results in an interpersonal 
comparison of utilities, which, according 
with microeconomics is not acceptable. Utili-
ties are a personal endowment of agents, and 
it is recommended to compare only utilities 
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of the same agent. Granot and Maschler4 (in 
[6]) refine this solution interpreting the ker-
nel as a set of payments configurations for 
which every pair of rational agents are lo-
cated symmetrically within their bargaining 
range. While two agents compare their sur-
pluses, the remaining agents are assumed to 
be content with what they receive. 
Klusch [6] proposes an algorithm for coali-
tion formation based on the kernel concept. 
The algorithm advances the agents from one 
coalition structure to another in order to in-
crease agents’ payoff, thus, increasing ration-
ally motivated cooperation. In each step at 
least one coalition will make an attempt to 
improve the payoffs of its members by com-
puting a subsequent payment configuration 
as a proposal to another, actually most prom-
ising coalition. If both agents agree on such a 
proposal, it will be broadcasted to the other 
coalitions. Thereby, there are temporally en-
forced to accept the corresponding payoff 
distribution for all agents. Since this affects 
particular agents that were not involved in 
the bilateral agreement, they may be dissatis-
fied with their new payoff, and will react 
with their proposals in the next round. The 
negotiation continues till all proposals of all 
coalitions entities of the current valid coali-
tion structure are rejected or a kernel stable 
payoff solution has been reached in the de-
fined period of time. We can see that this al-
gorithm mixes the two phases of determining 
of coalition structure and the payoff division. 
The algorithm is classified as a negotiation-
oriented and decentralized one, and the ter-
mination time is polynomial. It results in a 
kernel stable configuration, and provides the 
agents with a rational behaviour model for 
decision making. 
5 Applying coalition formation tools 
This section will take an example of a coali-
tional game and will try to identify the solu-
tions of the game according with the tools 
enumerated in section 4. The numerical ex-
ample was chosen from [2], who considered 
the same setup for analyzing creation, opera-

                                                 
4 Granot D., Maschler M., (1997) The Reactive Bargaining 
Set: Structure, Dynamics and Extensions to NTU Games. in 
International Journal of Game Theory, vol. 26/2 

tion and maintenance of virtual organiza-
tions. 
We can imagine a virtual organization where, 
in a city, an entrepreneur decides to offer full 
tourist packages for visitors. Therefore, it has 
to consider hotels where the tourists will be 
accommodated in the city and local tour or-
ganizers who will pick tourists from hotels, 
will perform a city tour and will bring back 
the tourists to their hotels. Local tour organ-
izers have 5 car centers (from where they 
will start the tours) and there are 2 hotels 
from where they will have to take visitors. 
This setup models a game with 7 cooperative 
agents, with the objective of maximizing the 
entrepreneur profit (or minimizing its cost). 
Maximizing the profit can be done if local 
organizers decide in a rational way from 
which car centre a bus will pick tourists from 
hotels. 
We will denote by 54321 ,,,, CCCCC  the car 
centres and by 21, HH  the hotels. A coalition 
C  might contain car centres and hotels. If a 
coalition C  contains only car centres or ho-
tels, its value )(CV  is 0, as no work is to be 
done. The value of a coalition containing 
both car centres and hotels is the profit the 
entrepreneur gets from letting the selected 
car centres to pick up visitors from the se-
lected hotels. 
We will consider the values of fig. 3 as being 
the definition of the characteristic value func-
tion. 
Considering the structure generation algo-
rithms of section 4.1, we can notice that for 
our problem, searching the two lower levels 
of the search graph bring out the most valu-
able coalition as being 

}},{},,,,,{{ 2415321 HCHCCCC  with the value 
76. 
Continuing the search with the approach of 
Sandholm [8], searching breadth-first the 
nodes of the graph, when approaching the 
second upper level of the graph, the most 
promising coalition is 

}}{},{},,{},{},{},{{ 1524321 HCHCCCC  with the 
value of 45. The 3rd level of the graph brings 
to the coalition structure of 

}}{},,{},{},,{},{{ 5243121 CHCCHCC  with the 
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value of 77. Next level, 5C  can join 2C  and 
1H  leading to an increased value of the coali-

tion structure to 86. Then, the algorithm joins 
1C  and 3C  in a no-significant coalition, enter-

ing a local optima peak of the search space. 
Returning on the 4th upper level, the algo-
rithm investigates the coalition structure 

}}{},,{},,,{},{{ 5241321 CHCHCCC  and on the 5th 
level it goes to outcome the solution 

}}{},,{},,,,{{ 5241321 CHCHCCC  with the value 
of 87. After some search, the most promising 
solution is found on iteration 194 on the 3rd 
upper level of the graph as being 

}},,{},,,(},{{ 2321415 HCCHCCC  with value 89. 
We can notice how breadth-first search 
avoids entering local optima of search space 
without a chance to recover, as in hill-
climbing search algorithms. 
The approach of Dang [2], when starting the 
search from the top of the graph, immedi-
ately finds the coalition structure of 

}}5{},2,4{},1,3,2,1{{ CHCHCCC with value 87 
on the second iteration. 
We can notice that the idea of coalition for-
mation algorithms is to quickly find a good 
approximation of the solution, rather than ob-
taining the best possible solution in a reason-
able time. Analyzing outputs of coalition 
formation algorithms, we can make an idea 
about possible final coalition structures at the 
end of the game. 
In order to determine the division of the 
payments inside the coalition, we need to 
analyze algorithms of section 4.2. First, we 
will determine the core, according with the 
definition of 4.2.1. 
If we try to determine the core, related to the 
grand coalition (all job done by all agents to-
gether), we would notice that the core is 
empty. For example, the marginal utility of 
the first car centre and the first hotel toward 
the grand coalition 
is 74249),,,,( 254321,1 =−=−= HCCCCVVMC GHC . 
Therefore, we should have 

7),(20 1,11111 =≤+≤= HCHC MCuuHCV  which is 
a contradiction. Therefore, in this game, 
players have no incentive to self-interested 
cooperate toward the grand coalition. With 
respect to the social welfare maximizing coa-

lition structure }},,{},,,(},{{ 2321415 HCCHCCC  
with value 89, the only useful inference we 
can make is that the hotels 1H  and 2H  should 
get a payoff at least 20, otherwise there will 
be an incentive for them to make a coalition 
with the 5th car center. This inference is not 
part of the core restrictions under the final 
utilities. The division of the payoff inside the 
coalitions of the structure should therefore 
(according with the marginal contribution 
principle) satisfy the following (weak) re-
strictions: 231 ≤u , 244 ≤u , 451 ≤Hu , 122 ≤u , 

143 ≤u , 442 ≤Hu , 4441 ≤+ uu , 4411 ≤+ Huu , 
4414 ≤+ Huu , 4531 22 ≤+≤ Huu , 

4533 23 ≤+≤ Huu . 
 
Therefore, the core cannot give us an obvious 
way of dividing the payoffs inside the wel-
fare maximizing coalition structure. Trying 
to run the algorithm of fig. 2 in order to de-
termine a solution inside the core of the 
game, we can notice that after few iterations 
(8) the algorithms converges to a solution, 
the one that divides equally the payoffs in-
side each coalition. Although the transfer 
scheme is a fair one, it can not assure the sta-
bility of the solution, as within this distribu-
tion of payoffs, hotels 1H  and 2H  gets less 
that 20 and, therefore, they have incentive to 
enter a coalition with 5C . 
Regarding the Shapley values of the game, 
we computed according with formula (4.4) 
the following numbers: 43.31 =Csv , 3.42 =Csv , 

52.43 =Csv , 02.44 =Csv , 4.25 =Csv , 
63.131 =Hsv , 7.162 =Hsv . The Shapley values 

represent a fair division between agents of 
the created value of making a coalition with 
regard to the opposite alternative (staying 
apart the coalition). We can notice that the 
second hotel has the biggest contribution, as 
the 5th car centre is the one with the smallest 
joint contribution to the game. We can easily 
notice the weak point of this distribution of 
the created value as (e.g.) car centre 5C  and 

1H  have incentive to deviate from the distri-
bution, because if they form alone a coalition 
they can obtain together a value of 20. The 
Shapley value solution divides only the new 
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created value, not the whole value of the coa-
lition structure. Shapley value division is not 

influenced by the coalition structure of the 
game. 

 
Figure 3 Characteristic function for the organizational game 
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Figure 4 Convergence of the kernel generation algorithm for payoff divisions. X axis repre-
sents the iteration number. Y axis represents the side payments of the transfer scheme 
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Regarding the kernel approach for dividing 
the payoffs, if we start the kernel generation 
algorithm of section 4.2.3 (formulas 4.7 and 
4.8) for the best coalition structure 

}},,{},,,(},{{ 2321415 HCCHCCC  we obtained 

the following distribution: 11 =Cu , 32 =Cu , 
23 =Cu , 54 =Cu , 05 =Cu , 381 =Hu , 402 =Hu . 

The solution resides inside the core and the 
most of payoff seems to go to the hotels, as 
they are key players of the game. The kernel 
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generation algorithm converged in a reason-
able time. Fig. 4 depicts the variation of side 
payments during the iterations of the algo-
rithm. We can notice that after less than 250 
iterations we obtained a reasonable division, 
taking into account that at each iteration 
time, only one pair of agents exchange value 
(communicates). The division according with 
the Kernel approach resides in the core and is 
stable (no agents have incentive to deviate). 
6 Conclusion 
This paper investigated methods toward coa-
lition formation inside agent societies. The 
approach is computational-based, the concern 
being on the coalition formation process and 
properties rather than on the subjective rea-
soning of agents. It was assumed that the de-
signer intends to have tools for simulating 
what could happen while the organization 
operates, if every agent fulfils at least some 
“rational” behaviour. 
As coalition formation is a 3-phases process, 
we insisted only on the determination of the 
coalition structure and the division of the 
payoffs. 
Determination of coalition structure is repre-
sented by a negotiation process in which 
agents discuss each other and agree or not to 
enter a coalition. In essence, the coalition 
structure determination represents a search 
on the all permutations set of partitions of a 
set. Therefore, the number of possible coali-
tion structures is very big, being not tractable 
to run a full search. Searching methods were 
proposed in the literature. These methods are 
based on building the search tree of the prob-
lem and performing an evaluation of the 
nodes of the tree. The criteria function em-
ployed for the search is the global social wel-
fare. Sandholm [8] and Dang [2] provides 
with worthwhile algorithms for fast determi-
nation of an acceptable coalition structure. 
The payoffs division is studied according 
with game theoretical concepts. Desirable 
properties are defined and one could impose 
such properties of the solution of the game. 
The core approach represents the strongest 
solution concept, from the theoretical point 
of view. It is based on the principle that from 
the solution of the game, no group of agent 

has incentive to deviate. The core approach 
supplies with the final expected payoff divi-
sion. The core concept is often too strong, as 
there are cases when, theoretically, no such a 
solution exists. The core concept can be well 
applied together with the presented searching 
methods for the coalition structure. The con-
cept that guides the path through the solution 
is the maximization of the social welfare. 
Other approaches are based on how pairs of 
agents negotiate or how an agent negotiates 
with a coalition. The Shapley value is a 
measure used to quantify the expected con-
tribution of an agent to a coalition. Agents 
will join coalitions if they can add value to 
the existing coalition. With respect to the 
Shapley value, determination of the coalition 
structure is not any more a search, being 
more a matter of negotiation. The Shapley 
value payoff division has the advantage that 
it exists, is unique, Pareto efficient and ethi-
cal, fulfilling the balanced contribution prin-
ciple. The Shapley value is suitable for agent 
in bilateral negotiations, when arguing for a 
division inside a coalition. 
Kernel approaches are based on the idea that 
every two agents in a coalition are in equilib-
rium, which means that no agent wants to 
give off the coalition, agreeing with the out-
come it obtained. Payment transfer schemas 
are considered, and convergence algorithms 
are proposed. Again, the coalition structure 
determination is a matter of negotiation. Ker-
nel approaches are worth to be applied after 
the coalition structure is determined, in order 
to generate payoffs such as agents would 
have no incentive to deviate. Therefore, if a 
designer can impose some rules such as the 
organization to be structured toward the wel-
fare maximizing solution, the kernel ap-
proach gives the designer the tool to suitable 
divide the values inside coalitions. 
Each alternative is based on game theoretical 
principles and supplies with iterative meth-
ods for providing with the coalitions. Agents 
should gain more from the coalition than if 
they would stay alone. Alone, coalition struc-
ture generation algorithms do not verify if 
this individual rationality criterion is ful-
filled. Each method has some drawbacks, as 
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each one proved some to fulfil some desir-
able properties. It depends on how the given 
real problem can be formulated which coali-
tion formation method will apply better. In 
every case, the analyst needs to consider the 
computational and communicational costs of 
the solution, as there are expensive searches 
and costly negotiation. The fact that these al-
gorithms are, by principle, decentralized 
represents a worth of them. 
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