
Economy Informatics, 1-4/2005

121

Reasons for Migrating Legacy Systems

Mihaela Carmen TRUFASU, Project Manager – WYLOG ROMANIA
Gabriel Claudiu CONSTANTINESCU, Project Manager – KEPLER ROMINFO

The tendency for most organizations is to hold on to their legacy systems as long as possible.
Even though there are new technologies that improve efficiencies, many factors contribute to
inertia. Usually there are critical components at the operations level that are not addressed
by off-the-shelf software. There are also historical data elements that must be retained. Then
there is the cyclic nature of the processes that cannot be interrupted if the organization is to
function effectively. These issues must be dealt with in realistic terms in order for legacy sys-
tems migration projects to be successful.
Keywords: legacy applications, migration, migration decision, application development plat-
forms.

he continuously evolving programming
languages and the always improving

programming technologies along with the
development of capabilities on the behalf of
the hardware components provide a wide
range of deployment solutions for IT sys-
tems.
The innovation on hardware and software
technology have started to compete tremen-
dously each other in the late ’80s when com-
puters became “personals”, by having
smaller sizes and becoming more and more
user friendly because their new operating
systems.
The companies that have had a glimpse on
the huge advantage of using machines to do
the most laborious, recurrent and compli-
cated tasks or to store data for later usage
have formalized requirements and have
started to implement systems tailored on their
needs and operational demands.
Customized systems have been built using
programming languages and hardware archi-
tectures that represented the top technology
at that time.
The most powerful programming tools of
that down of a new informational era were –
in no specific order - COBOL, Fortran, C++,
Pascal, FoxPro, PERL, dBase.
Even though the programming tasks were not
easy to be fulfilled because there was no in-
tegrated development environment, no de-
bugger or integrated linker and compiler
these solutions have been tested, improved

and done their duties. Time passing by, they
became stable, they became efficient and
they store more and more useful information.
The customized features and of lack of inter-
operability standards have transformed these
solution into closed systems.
Only to give an example we can mention that
if need be to extract data from COBOL data
files the only effective way to do that was to
write COBOL routines. If need be to store
data to these files the answer was also CO-
BOL.
COBOL data files do not contain information
about their own organization and record
structure. That is, if you have just a COBOL
data file but not the Cobol program capable
of writing or reading this file, you cannot
correctly interpret the data contained in this
file.
For every COBOL data file that you want to
be able to read and interpret, you need the
following:
- SELECT statement for the file. It comes
from the Input-Output Section of Environ-
ment Division of the program that wrote the
file. This statement tells the system how the
file is organized: it contains file organization,
file access mode, etc.
- FD statement for the file. It comes from
the File Section of Data Division of the pro-
gram that wrote the file. This statement tells
the system how the file record is organized: it
contains record field lengths, offsets, usages,
pictures, etc.

T

Economy Informatics, 1-4/2005

122

- The COBOL data file itself.
Even if you have all 3 components as de-
scribed above, reading and interpreting the
data is still difficult:
- You need to extract SELECT and FD
statements for the file from the Cobol pro-
gram. Therefore you need a specialized Co-
bol parser that does it.
- You need to parse the extracted SELECT
and FD statements and get file and record in-
formation from these statements. Again you
need an FD/SELECT statement parser and
record layout builder.
- Finally, once you have all file parameters
and record layout, you need to read the actual
Cobol data file and convert the record that
you read to required non-Cobol format. Since
some of Cobol data formats are not used by
any other language or database, interpreting
Cobol data is far from trivial.
Some of these languages have a same ances-
tor and have evolved into new programming
languages. This might be the example of
PERL that has evolved from C into PHP.
PHP succeeds an older product, named
PHP/FI. PHP/FI was created by Rasmus Ler-
dorf in 1995, initially as a simple set of
PERL scripts for tracking accesses to his
online resume. He named this set of scripts
'Personal Home Page Tools'. As more func-
tionality was required, Rasmus wrote a much
larger C implementation, which was able to
communicate with databases, and enabled
users to develop simple dynamic Web appli-
cations. Rasmus chose to release the source
code for PHP/FI for everybody to see, so that
anybody can use it, as well as fix bugs in it
and improve the code.
PHP/FI, which stood for Personal Home
Page / Forms Interpreter, included some of
the basic functionality of PHP as we know it
today. It had Perl-like variables, automatic
interpretation of form variables and HTML
embedded syntax. The syntax itself was simi-
lar to that of Perl, albeit much more limited,
simple, and somewhat inconsistent.
By 1997, PHP/FI 2.0, the second write-up of
the C implementation, had a cult of several
thousand users around the world (estimated),
with approximately 50,000 domains report-

ing as having it installed, accounting for
about 1% of the domains on the Internet.
While there were several people contributing
bits of code to this project, it was still at large
a one-man project.
The server side script interpreting technology
has improved its capabilities and perform-
ances, for example with this evolution.
All these applications that store business in-
telligence and the enterprises business proc-
ess patterns have evolved with the opera-
tional structures and within the business
structures.
If we place ourselves in the ‘90s when the
Silicon Valley made history on the American
technology market we see that the software
development tools had to register a boom in
their enhancements. We don’t know exactly
if the software evolution has started the
hardware revolution or the lack of perform-
ances in the software design has pushed the
innovators to build better machines but we
start seeing old application that cannot take
benefits from the capabilities of the new
hardware PC components.
Because of their design, because the devel-
opment tools which have well served the last
5 years became old-fashioned and very slow
when comparing to the new ones.
We seen, in the late 90’s or even sooner the
need to reengineer the code, to transfer the
data to new management systems to improve
the code and optimize the speed. This is the
meaning of MIGRATION - migration from
legacy systems to new ones, from old soft-
ware and software architectures to new ones
that fully benefit from the hardware and
software capabilities of the new systems.
When solution architects were asked to de-
sign the new system that reproduce exactly
all the functions of the old one, they have say
that these systems must be REWRITEN.
The lifecycle of on an application become
shorter and shorter and is directly linked to
the software and hardware performances.
This pace is also imposed by the competition
in each business, he who got the information
at the best quality and at the perfect time got
the power.

Economy Informatics, 1-4/2005

123

When designing the new application the
trend of evolution in the business require-
ments is carefully studied, forecasts and de-
velopment scenarios are ruled to simulate the
response of the future system.
The first reason for migrating applications –
with or without architectural redesign, with
or without adding other functionalities – is
TO IMPROVE PERFORMANCES.
1. To improve performances.
The migration and the redesign that aims im-
proving performances regard: data process-
ing speed; data saving and retrieving speed;
user interoperability features.
Speed performances depend mostly on the
best usage of hardware capabilities of the
machines. This is assured by the usage of the
best technologies and drivers for these com-
ponents.
Improving performances depend on the oper-
ating system on which the application is in-
stalled; software interfaces of the hardware
components; software technologies that ac-
cess the interfaces of hardware components.
Before studying the ways to improve the ap-
plication performances designers analyze the
following: data storage; data processing; data
retrieval; the way that applications access
data; the way that the user interact with the
system; the slowest/longest processes in the
system; the balance of the response time in
the average processing time.
2. To make it portable
Most of the IT systems that have been de-
signed ten years ago were platform depend-
ent because there were very few choices at
that time. These systems were exploiting the
capabilities of that platform
The hardware evolution and the movements
on the IT market have led to a branch like
(hierarchical) evolution of operating systems.
This evolution has been really explosive
when LINUX has proved well its abilities
and hit the market with his open-source dis-
tribution kits.
The reliability of this open and free distrib-
uted operating system was the best thing that
happened for the companies in the SOHO
market segment. Computer usage became
cheaper. This gave also a bump to the soft-

ware industry and software vendors have to
reorient their production on this direction.
The most important vendors for software de-
velopment tools have oriented their efforts to
provide tools for building multiplatform ap-
plication.
Another business feature that requires port-
ability is the hardware platforms variety.
Within a company the processing needs
linked to the IT systems differs from one de-
partment to the another, the graphical design
department requires graphical stations with
more capabilities on the graphical board and
RAM, the financial department requires
small graphical resources but more storage
and processing resources, for instance.
Modules of the IT systems have to work well
in both above mentioned departments and on
the laptops of the employees with high mo-
bility.
To fully get benefit from the IT system this
has to be PORTABLE on various exploita-
tion platforms – hardware and software – and
to provide a high level of INTEGRABILITY.
This is the second most frequently occur-
ring reason for migrating legacy applications.
3. To add processing options impossible to
implement within the current solution
There are two reasons that led to this deci-
sion:
1. the legacy system need to improve its
speed, its effectiveness, its interactions etc;
2. new features are required by the business
evolution, features that cannot be imple-
mented within the current application due to
the effort estimation or to the capabilities of
the solution design.
An in-depth analysis of the main operations
is required to decide the new system architec-
ture that take advantage of the legacy system
and uses all the legacy data as the old system
has done. The decision to reorganize legacy
data is to consider not only the whole trans-
formation effort but also the effort of devel-
oping appropriate tools to translate data from
the legacy structure to the new one.
In most of the situations decision makers
choose a two step migration based on the
multi-tier architecture to insure that the mi-
gration of the informational system will not

Economy Informatics, 1-4/2005

124

affect the whole business development and to
spread in time the deployment costs.
The legacy data storage system is left un-
touched as the business layer of the applica-
tion is rewritten. A data access layer is de-
veloped to retrieve and store legacy data. The
business layer interacts only with the data
layer at this stage of the application lifecycle.
When the new system performs well the de-
cision to migrate towards a new data organi-
zation can be postponed according to the
budgets. Only the data layer shall be rewrit-
ten if need be to change data storage system
or data organization.
This kind of migration is a borderline as it is
very close to reengineering which is a com-
plex step in the application lifecycle.
4. To widen/restrain the access to the ap-
plication
In the late ‘90s the top in designing applica-
tions was the design of client/server applica-
tion. Usually there was a database server and
an application installed on the user’s ma-
chine. All data storage and retrieval tasks
were transferred to a dedicated machine that
required special features as a bigger hard disk
and more RAM. The end-user, in this topol-
ogy, was accessing data on the server by us-
ing a fat-client application installed on their
workstations.
This was the most frequently deployment
pattern for the client/server applications. The
users share the same data but each of them
has to run on their workstations “client” ap-
plications that implement the entire business
specific logic.
Adding new features or modifying old ones
involved the re-deployment of the client ap-
plication on all the workstations.
The users having a high level of mobility had
to install on their laptops or mobile devices
applications that were called “fat” not only
because all the business logic was stored in
these client applications but also because of
the resources that they required.
We should also think that usual laptops have
offered not so much hardware capabilities in
late ‘90s.
Moreover, the connection to the database
servers for the mobiles users required the re-

mote access at the company network, con-
nection that lead to security gap or increasing
the security costs.
These were only a few reasons for creating
new system models to cope with the issues of
the client/server architecture. This model is
called multi-tier and most of the applications
that have been migrated from client/server
architecture were migrated to multi-tier web
applications. This was called “webisation”.
5. To allow globalization
The 1.0 release in may 1991 of Visual Basic
represented a new start in the history of rapid
applications development (RAD) tools. The
application development acquired a new di-
mension because of the intuitive way of
building applications in this “visual” devel-
opment environment. This speed in applica-
tion development and deployment has impor-
tantly decreased the cost of using such in-
formational systems and made them more
accessible to companies.
Migrating applications from Visual Basic 1.0
to Visual Basic 6.0 was an easy decision to
take because every new version of the appli-
cation development tool brought improve-
ments and new design and operating features.
When globalization became a wide spread
phenomenon and companies that were using
these applications have wanted to open new
branches in China and East Asian countries
that have emerged as the latest important
players in the global economy they had the
huge problem with their legacy applications:
these applications even though they were de-
veloped to support Multilanguage they were
not able to cope with DBCS. English and
European software typically use about 100
different characters to represent words and
numbers. So a single character can bit store
in a byte—being 8 bits.
Double-Byte Character Set, is a character set
that uses two-byte characters rather than one-
byte characters. Some languages, such as
Chinese, Japanese and Korean, have writing
schemes with many different characters that
cannot be represented with single-byte codes
such as ASCII and EBCDIC. DBCS charac-
ters must be used with hardware and software
that support the double-byte format

Economy Informatics, 1-4/2005

125

The only solution for this problem was the
migration of these applications towards lan-
guages that have DBCS support that Visual
Basic 6.0 had not.
The natural solution of this problem seemed
to be the migration to the new Visual Basic
version – the 7.0, version that has all the fea-
tures that allow managing, displaying and
processing string resources using DBCS.
6. To make it look better
Even it is hard to imagine, systems that have
been built in the late ‘80s, in COBOL for in-
stance, are performing well nowadays too.
These systems were designed for worksta-
tions having text display and a very poor
range of colors.
The decision to migrate these systems has
been postponed in the time because the sys-
tem was doing really well. The reason for it
cannot be avoided anymore is the fact that
they are old-fashioned and not so easy to use
for the users who are used to have mousses
and windows on their screens.
The nowadays users look for so called “user
friendly” application interfaces that exploit
and develop their operational habits.
Not only the COBOL written applications
need improvements on the user interfaces but
also those systems that have a user interface
that has generated problems or misunder-
standings in use.
The solution of these user interface problems
may go from redesigning and rewriting the
interfaces to the migration of the new system
to a new development environment or to a
new operating system.
The most conservative solution that we have
met and built was the development of a user
friendly web interface that drove the legacy
system. The idea was quite simple: the user
sees the web application and doesn’t have a
clue that behind this there is the old COBOL
application running that expects exactly the
same information from him and has exactly
the same old and good behavior.
7. To meet a marketing goal
Consumer’s rules apply around the world to
the information technology as well as to all
the industries. There are trends and fashions
that come and go that point the users taste

towards systems that are preferred because
they are well known and they are sold by
huge corporations that have invested big
money in their marketing politics. There are
also less known development platforms that
perform really well comparing to the previ-
ous ones but are not used because their low
profile on the market.
Most of the time the consumer preferences
are linked to important performances features
that are well represented into the media: re-
views, websites and forums.
The independent software vendors that pro-
vide less or more tailored solutions must im-
prove those solutions according to the soft-
ware and hardware industry evolution trends
and have to listen to the consumer’s prefer-
ences for platforms and development tools.
Usually the migration is to be done to a new
development platform or database manage-
ment system that improves also the average
performances of the system.

Conclusions
Most of the time when a company decides to
migrate an application there is a mix of all
the above reasons that led to this decision. In
this above lines we inventoried only the main
reasons that we have met in our ten years of
experience in developing and migrating cus-
tomized software applications for various in-
dependent software vendors from Europe and
USA. We have also tried to extract each
atomic reason from the mixture.

Bibliography
1. Dr. Vladimir Bacvanski – “An Object-
Oriented, Component-based Approach to
Migrating Legacy Systems”, July 2004;
2. O'Reilly & Associates, Inc. – “History of
Programming Languages”, May 19, 2004;
3. STAR Ireland – “Introduction to Asian
Translation.”, August 17, 2004;
http://www.star-ts.com/Asia.pdf
4. http://www.webopedia.com;
http://msdn.microsoft.com/library/

