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Monte Carlo simulation is a mathematical technique involving repeated simulation of a sys-
tem with random sampling from probability distributions of real life processes. The Monte 
Carlo method is widely applied to large and complex problems to obtain approximate solu-
tions. This method has been successfully applied to problems in physical sciences and, more 
recently, in economy and finance. Sufficient number of repetitions, called iterations, is re-
quired to arrive at a statistically viable result - usually an average value of a parameter. In 
today's competitive market environment, especially in the financial market, Monte Carlo is 
applied generally for risk management, in the calculation of Value at Risk (VaR) and Profit at 
Risk (PaR). However, the method of applying the Monte Carlo technique differs between the 
financial market and other markets, as for example the electricity market.  
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Introduction and short history of 
Monte Carlo simulation technique 

The Monte Carlo method provides approxi-
mate solutions to a variety of mathematical 
problems by performing statistical sampling 
experiments on a computer. This method has 
been successfully applied to problems in 
physical sciences and, more recently, in fi-
nance. Many difficult financial engineering 
problems, such as the valuation of multidi-
mensional options, path-dependent options, 
and stochastic volatility or interest rate op-
tions can be tackled thanks to this technique. 
Monte Carlo simulation in general is used 
when analytical methods are either not avail-
able or are available but the mathematical 
procedures are so complex that simulation 
provides a simpler method of the solution.  
The method is called after the capital city of 
Monaco, because of roulette, a simple ran-
dom number generator. The name and the 
systematic development of Monte Carlo 
methods date from about 1944.  
There is however a number of isolated and 
undeveloped instances on much earlier occa-
sions.  
For example1, in the second half of the nine-
teenth century a number of people performed 

                                                 
1 http://stud4.tuwien.ac.at/~e9527412/index.html  

experiments, in which they threw a needle in 
a haphazard manner onto a board ruled with 
parallel straight lines and inferred the value 
of PI = 3.14… from observations of the 
number of intersections between needle and 
lines. An account of this playful diversion 
(indulged in by certain Captain Fox, amongst 
others, whilst recovering from wounds in-
curred in the American Civil War) occurs in 
a paper of A.Hall (A. HALL 1873. " On an 
experimental determination of PI").  
According to Eckhardt, Ulam invented the 
Monte Carlo method in 1946 while ponder-
ing the probabilities of winning a card game 
of solitaire2. However, Metropolis "attributes 
the germ of this statistical method to Enrico 
Fermi, who had used such ideas some 15 
years earlier"3.  Allegedly, Nick Metropolis 
coined the name 'Monte Carlo', which played 
an essential role in popularizing the 
method". Winston (1996, p.22) wrote that the 
term was coined by mathematicians S. Ulam 
and J. von Neumann in the feasibility project 
of atomic bomb by simulations of nuclear 
fission, and they given the code name Monte 
Carlo for these simulations.  
The first Monte Carlo paper, "The Monte 

                                                 
2 www.riskglossary.com/articles/monte_carlo_method.htm 
3 scienceworld.wolfram.com/biography/Metropolis.html  
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Carlo Method" by Metropolis & Ulam, was 
published in 1949 in the Journal of the 
American Statistical Association.  
Since then, several different areas have been 
using the Monte Carlo simulations. With the 
advent of personal computers and the popu-
larization of faster computational machines, 
the Monte Carlo simulations have been in-
creasing popular as an important alternative 
for the solution of complex problems.  
 

2. Simulation using Monte Carlo.   
There are eight steps involved in simulation 
using Monte Carlo:  
Step 1. Describe system probability distri-
butions  
Describe the system and obtain the probabil-
ity distributions of the relevant probabilistic 
elements of the system. This step requires in-
timate familiarity with the system and incor-
rect assumptions at this point invalidate the 
rest of the simulation.  
Step 2. Decide on the measures of per-
formance.  
Define the appropriate measure of system 
performance. If necessary, write it in the 
form of an equation. Some examples are: av-
erage daily profit, average annual spot prices, 
average monthly spot prices, lost of load 
probability, average annual unsaved energy. 
This depends on the objective. System reli-
ability studies focus on unsaved energy and 
loss of load indices. Investment feasibility 
studies generally focus on average energy 
prices and plant capacity factors.  
Step 3. Compute cumulative probability 
distributions.  
Construct cumulative probability distribu-
tions for each of the stochastic elements.  
Step 4. Assign representative ranges of 
numbers.  
Assign representative numbers in correspon-
dence with the cumulative probability distri-
butions.  
Step 5. Generate random numbers and 
compute the system's performance.  
For each probabilistic element, take a random 
sample.  
Step 6. Compute measures of perform-
ance.  
Derive the measures of performance. Each 

Monte Carlo simulation run is composed of 
multiple iterations. The question of the num-
ber of iterations required involves statistical 
analysis. The larger the number of iteration, 
the more accurate the results, but it takes 
more time and the cost is higher. This issue 
concerns what are labeled as stopping rules. 
The run could be terminated when a desired 
standard error in the measures of perform-
ance is attained.  
Step 7. Stabilization of the simulation 
process.  
Simulation begins to represent reality only 
after stabilization has been achieved. There-
fore, we distinguish a start-up period during 
which the data results are not yet valid. The 
length of the simulation must be sufficient 
for the system to reach stability.  
Step 8. Repeat steps 5 and 6 until meas-
ures of system performance stabilize.  
When the differences between each sample's 
index of measure, say loss of load probability 
(LOLP), average prices or other index, be-
comes small or insignificant, then the process 
is said to have stabilized. The significance 
level is set typically by management.  
Generally, the Monte Carlo procedure in-
volves generating a large number of realiza-
tions of the underlying process and, using the 
law of large numbers, estimating the ex-
pected value as the mean of the sample. This 
translates into following algorithm: 
1: for j=1 to N do 
2: Simulate sample paths of the underlying 
variables (asset prices, interest rates, etc.) us-
ing the risk neutral measure over the time 
frame of the option. For each simulated path, 
evaluate the discounted cash flows of the de-
rivative Cj 
3: end for 
4: Average the discounted cash flows over 
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We note that the standard deviation of the 
Monte Carlo estimation Ĉ  decreases at the 
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order ( )NO /1  and thus that a reduction of a 
factor 10 requires an increase of the number 
of simulation runs N of 100 times. 
 
3. Financial Market Model   
Where the Monte Carlo simulation model in 
the financial commodities market differs 
from other markets is perhaps in the determi-
nation of the relevant probabilistic elements 
of the respective systems and their corre-
sponding probability distributions. 
In the financial markets, the relevant ele-
ments are typically the commodity/share 
prices, the interest rates and the exchange 
rates. The commodity and share prices are 
generally determined by price expectations of 
the masses of investors and traders in the 
market system. The large number of traders 
(investors) generally results in a common 
probabilistic behavior, that is, one that fol-
lows a normal and lognormal distribution. 
This investor behavior is affected by eco-
nomic conditions and sometimes actual real 
life news events but in general, not affected 
by real time physical events such as say, a 
generating unit falling out of service.  
In short, the financial market model can be 
described by those elements such as the 
commodity/share price which have a past 
history and known probabilistic behavior.  
 
4. Relevant Elements of the System. Con-
clusions 
In other markets, as for example in the elec-
tricity market, the relevant elements are dif-
ferent.  
Here the prices, unlike in most commodities 
in the financial market, exhibit a strong cou-
pling with the condition of the physical 
power system. These prices are not as de-
pendent on investor behavior as they are de-
pendent on the level of capacity reserves in 
the system, the system demand and level of 
congestion in the network. Because of this 
strong physical coupling, it is unwise to rep-
resent that price behavior as simply an equa-
tion devoid of relationship with the physical 
system.  
Although, it is possible to represent the his-
torical price behavior in an equation form, 
encapsulating its mean reversion and jump 

behavior within the equation parameters, this 
necessitates gross assumptions and simplifi-
cations. There may be some applications of 
this approach but only within a limited simu-
lation time frame. Its application to long term 
financial market forecasting is questionable.  
A better way to model the price behavior is 
to include the relevant elements that affect it 
within the simulation. These elements are the 
demand, the supply, the market and power 
system and the bidding behavior4. Probabilis-
tic distributions are then applied to both sup-
ply and demand. For the supply, the genera-
tor unit random forced outages are described 
by a special kind of distribution called a 
Weibull distribution. This type of distribution 
is applied to the mean time for failure and 
mean time to repair of the type generating 
unit. Price is determined by taking these dif-
ferent elements and their interaction into ac-
count, thereby avoiding the need for gross 
assumptions and simplification.  
In today's competitive financial market with 
its inherent uncertainties and complexities, 
Monte Carlo simulation can be used to fore-
cast future prices and market behavior. Un-
derstanding the technique and having the 
right tools can spell the difference between 
success and failure in short term and long 
term trading and investing.  
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