
Economy Informatics, 1-4/2004

58

Data Warehouse and OLAP. Methodologies, Algorithms, Trends

Radu LOVIN

IT Consultant – Tata Consultancy Services
GE European Equipment Finance - Data Warehouse Project

radu.lovin@ge.com

On-Line Analytical Processing (OLAP) is a component of Decision Support System (DSS).
OLAP queries are complex aggregated computation queries over large data set. Speed is pri-
mary goal of OLAP applications. Computation of multiple related group-bys is one of the
core operations on OLAP. Gray [8] proposed “CUBE” operator to support processing of
group-by queries. Currently, there are two popular technologies for OLAP implementation:
Relational OLAP (ROLAP) and Multidimensional OLAP (MOLAP). Some efficient algorithms
have been developed for ROLAP, but even though multidimensional OLAP is more natural
way to represent multidimensional data, not many algorithms have been developed for MO-
LAP. MOLAP systems, though may suffer from sparsity of data, are generally more efficient
than ROLAP when sparsity of data cube is removed or when data set varies from small to
medium size. In this article I just want to give you an overall picture about OLAP research
activity in the last years, along with some basic information about Data Warehousing and
Analytical Processing.
Keywords: data warehouse, algorithms, trends, methodologies.

Introduction
During the past decade the demand of de-

cision support systems has emerged at a rapid
rate. The separation of the enterprise infor-
mation architecture into two separate envi-
ronments has quickly become popular.
Alongside with traditional On Line Transac-
tion Processing (OLTP) environment a new
On Line Analytical Processing (OLAP) com-
ponent has been introduced, dedicated to de-
cision oriented analysis of historical data.
The central element of new environment is
Data Warehouse, a read only repository of
data that is used for analysis and assist in de-
cision making of enterprise policy by the top
executives.
Data warehouses and related OLAP tech-
nologies [4, 5] continue to receive strong in-
terest from research community as well as
from industry. A warehouse contains data
from a number of independent sources, inte-
grated and cleansed to support clients who
wish to analyse the data for trends and
anomalies. The decision support is provided
by OLAP tools, which present their users
with a multidimensional perspective of the
data warehouse and facilitate the writing of

reports involving aggregation along the vari-
ous dimensions of the data set [4]. Because
all these queries are often complex and the
data warehouse database is often very large,
processing the data queries quickly is an im-
portant prerequisite for building efficient De-
cision Support Systems (DSS). Before we in-
troduce our approach to answering complex
OLAP queries, we first review some impor-
tant background information.
2. What is the Data Warehouse?
Maybe the first definition of what Data
Warehouse means is dating from the early
1990s: the data warehouse is the queryable
presentation resource for an enterprise’s data
and this presentation resource must not be
organized around an entity-relation model
due to lack of understandability and the per-
formance. W. H. Imon, a leading architect of
data warehouse concept, defined a data
warehouse as a “subject-oriented, integrated,
time variant and non-volatile collection of
data in support of management’s decision
marketing process” [13]
3. Dimensional Model
The fundamental idea of dimensional model-
ling is that nearly every type of business data

1

Economy Informatics, 1-4/2004

59

can be represented as a kind of cube data,
where the cells of the cube contain measured
values and the edges of the cube define the
natural dimensions of the data. Of course, the
model allows more than three dimensions in
the design, so we technically should call the
cube a hypercube, although the term cube
and data cube are used by almost everyone.
Any point inside the cube represents the
“place” where the measurement of the busi-
ness for that combination of dimensions is
stored.
Facts – A fact is “an observation in the mar-
ket place”. It contains the measurement of
the business. The most useful facts are nu-
meric and additive.
Dimensions – A dimension is a collection of
text-like attributes that are highly correlated
with each other. The dimensions are syntacti-
cal categories that all allow us to specify
multiple ways to look at business informa-
tion, according to natural perspectives under
which its analysis can be performed. Each
dimension can be organized into a hierarchy
of levels, corresponding to data domains at
different granularity. A level can have de-
scription associated with it. Within a dimen-
sion, values of different levels are related
through a family of rollup functions.
Variable – Variables are typical numerical
measures like Sales, Cost, Profits, Expenses
and so forth.
Hierarchy – A hierarchy is path of aggrega-
tion of dimensions. A dimension may have
multiple levels of granularity, which have
parent-child relationship. A hierarchy defines
how these levels are related.
Member – A member is a data item in the
dimensions. Typically, you create a caption
or describe a measure of database using
members.
Datacube – Datacubes are sets of precom-
puted views or special data structure (e.g.
multidimensional arrays) [5] of selected data
that are formed by aggregating values across
attributes combinations (a group by in the da-
tabase terminology). A generated cube on d
attribute values can either be complete, that
is it contains all 2d possible views formed by
attribute combinations or partial, that is con-

tains only subset of 2d possible views.
4. OLAP
OLAP stands for “On-Line Analytical Proc-
essing” and describes a class of technologies
that are design for ad-hoc data access and
analysis.
The general activity of querying and present-
ing text and numbers data from data ware-
houses, as well as a specifically dimensional
style of querying and presenting that is ex-
emplified by a number of “OLAP vendors“.
The OLAP vendors’ technology is non-
relational and is almost always based on an
explicit multidimensional cube of data.
OLAP databases are also known as multidi-
mensional databases, or MDDBs. While rela-
tional databases are good at retrieving a small
number of records quickly, they are not good
at retrieving large number of records and
summarizing them on the fly [14]. Slow re-
sponse time and inordinate use of system re-
source are common characteristics of deci-
sion support built exclusively on top of rela-
tional database technology.
4.1. FASMI
The standard characteristic of OLAP is de-
fined as Fast Analysis of shared Multidimen-
sional Information (FASMI) [4].

 FAST – The system is targeted to deliver
most of the response within seconds.

 ANALYSIS – The system can cope with
any business logic and statistical analysis that
is relevant for the application and the user. It
is certainly necessary to allow the user to de-
fine ad-hoc calculations as part of the analy-
sis and to report on data in any desired way
without having to program.

 SHARED – The system implements all
security requirements for confidentiality and,
if multiple write accesses are required, con-
current updates and locking at an appropriate
level have to be possible. But this is an area
of weakness in many OLAP products, which
tends to assume that all OLAP applications
will be read only, with simple security con-
trol.

 MULTIDIMENSIONAL – The system
must provide a multidimensional conceptual
view of data including full support for hierar-
chies, as is certainly most logical way to ana-

Economy Informatics, 1-4/2004

60

lyse business and organization.

 INFORMATION – The system has to
contain all the required information, as much
as is relevant for application.
4.2. OLAP Operations

 ROLL-UP. Roll-up creates a subtotal at
any level of aggregation needed from the
most detailed up to the grant total. This func-
tion is also called consolidation [4].

 DRILL-DOWN. Drill-down breaks the
subtotal at any level of granularity to lower
level of granularity to lower level of granu-
larity in hierarchy, means it gives details of
relationship at the lower level.

 SLICING AND DICING – Selecting a
subsection of datacube based on the con-
stants in one or few dimensions. If one di-
mension is fixed, the operation is called slice
and if more than one dimension are fixed, the
operation is called dice.

 PIVOT. Pivoting is swapping of columns
and rows. This allow user to look at data
from different view. This is also commonly
known as rotation [13].
4.3 OLAP Implementations
Currently there are two technologies for im-
plementation of OLAP servers, namely Rela-
tional OLAP (ROLAP) and Multidimen-
sional OLAP (MOLAP)

 OLAP might be implemented on standard
or extended relation DBMS, called Rela-
tional OLAP (ROLAP) server (ex MetaCube
by IBM). This server support extension to
SQL and special access and implementation
method to efficiently implement the multidi-
mensional data model and operations. It is
assumed that data is stored in relation data-
bases either in the form of star or snowflake
schema [5] or in the form of materialized
views.

 Multidimensional OLAP (MOLAP) serv-
ers directly store multidimensional data in
some special data structures (such as arrays)
and implement the OLAP operations over
these specials data structures [5]. Oracle’s
Oracle Express and Essbase from Hyperion
come under this category [13].

 Hybrid online analytical processing
(HOLAP) is a combination of relational
OLAP (ROLAP) and multidimensional

OLAP (MOLAP). HOLAP was developed to
combine the greater data capacity of ROLAP
with the superior processing capability of
MOLAP. HOLAP can use varying combina-
tions of ROLAP and OLAP technology.
Typically it stores data in a both a relational
database (RDB) and a multidimensional da-
tabase (MDDB) and uses whichever one is
best suited to the type of processing desired.
The databases are used to store data in the
most functional way. For heavy data process-
ing, the data is more efficiently stored in a
RDB, while for speculative processing, the
data is more effectively stored in an MDDB.
HOLAP users can choose to store the results
of queries to the MDDB to save the effort of
looking for the same data over and over
which saves time. Although this technique -
called "materializing cells" - improves per-
formance, it takes a toll on storage. The user
has to strike a balance between performance
and storage demand to get the most out of
HOLAP. Nevertheless, because it offers the
best features of both OLAP and ROLAP,
HOLAP is increasingly preferred. DbMiner
is a product that adopts HOLAP methodol-
ogy.

 Desktop OLAP (DOLAP) is a term used
to denote single-tier, desktop-based business
intelligence software. Its most distinguishing
feature is its ability to download a relatively
small hypercube from a central point (usually
a data mart or data warehouse).
4.4. Related Works
Framework design for OLAP and data cube
computation has drawn considerable amount
of attention of database research community
in the last decade. There is a number of lit-
eratures available on data computation [1, 10,
12, 15, 16] and modelling multidimensional
database [2, 6, 7, 9, 11]. The algorithms pro-
posed in [1, 12] are for ROLAP and aims to
support CUBE operator as SQL extension in
existing relational database systems rather
than providing stand-alone (source data inde-
pendent) OLAP applications. Though MO-
LAP is more natural way to implement
OLAP operations only few [10, 15] algo-
rithms have been developed for MOLAP.
Moreover, the most of the algorithms pro-

Economy Informatics, 1-4/2004

61

posed so far are designed with the considera-
tion that we have very small memory at our
disposal. There are few algorithms, so-called
“in memory”, based on a big amount of
RAM. They are not implemented yet but they
tend to be preferred in the near future due to
rapidly decreasing price of memory. In the
following lines I will try to present an over-
view of related work in the field of data
warehousing and On Line Analytical Proc-
essing. Research related to this work falls
under these categories: OLAP servers, in-
cluding ROLAP and MOLAP, data cube
computation, view materialization in data
warehouse and developing framework for
querying data cube.
4.4.1. ROLAP Server
ROLAP servers store the data in the rela-
tional tables using star or snowflake schema
design [5]. In the star schema, there is a fact
table plus one or more dimensions tables.
The snowflake schema is a generalization of
the star schema where the core dimensions
have aggregation levels of different
granularities. In the ROLAP approach, cube
queries are translated into relational queries
against the underlying star or snowflake
schema using the standard relational opera-
tors such as selection, projection, relational
join, group by, etc. However, directly execut-
ing translated SQL can be very inefficient.
Therefore many commercial ROLAP servers
extend SQL to support important OLAP op-
erations directly. Examples of ROLAP serv-
ers are IBM’s Metacube, Microstrategy, Sea-
gate.
4.4.1.1. Computation and optimizing the
computation of data cube
The first published work on methods of op-
timising the computation of data cube is re-
ferring to storing collections of group-bys
[1]. Computing the cube stored on some rela-
tional tables requires generalization of stan-
dard relational aggregation operator. Two ba-
sic methods have been studied for computing
single group-bys:

 Sort Based Method PipeSort
 Hash Base Method PipeHash

These two methods have been adapted to
compute multiple group-bys as well by in-

corporating the following optimisations:
1. Smallest-parent – This optimisation, first
proposed in [18], aims at computing a group-
by from the smallest previously computed
group by. In general, each group-by can be
computed from a number of other group-bys.
Figure 1 shows a four-attribute cube (ABCD)
and the options for computing a group-by
from a group-by having one more attribute
called its parent. For instance, AB can be
computed from ABC, ABD or ABCD. ABC
and ABD are clearly better choices for com-
puting AB. In addition, even between ABC
and ABD, there can often be big difference in
size making it critical to consider size in se-
lecting a parent for computing AB.
2. Amortize-scans: This optimisation aims
at amortising disk reads by computing as
many group-bys as possible, together in
memory. For instance, if the group-by ABCD
is stored on disk, we could reduce disk read
costs if all of ABC, ACD, ABD and BCD
were computed in one scan of ABCD.
3. Cache-results: This optimisation aims at
caching (in memory) the results of a group-
by from which other group-bys are computed
to reduce disk I/O. For instance, for the cube
in Figure 1, having computed ABC, we com-
pute AB from it while ABC is still in mem-
ory.
4. Share-sorts: This optimisation is specific
to the sort based algorithms and aims at shar-
ing sorting cost across multiple group-bys.
For instance, if we sort the raw data on at-
tribute order ABCD, then we can compute
groups-bye ABCD, ABC, AB and A without
additional sorts. However, this decision could
conflict with the optimisation smallest-
parent. For instance, the smallest parent of
AB might be BDA although by generating
AB from ABC we are able to share the sort-
ing cost. So it’s necessary to do a global
planning to decide what group-by is com-
puted from what and the attribute order in
which it is computed. Here comes into pic-
ture the PipeSort algorithm.
5. Share-partitions: This optimisation is
specific to the hash-based algorithms. When
the hash-table is too large to fit in memory,
data is partitioned and aggregation is done

Economy Informatics, 1-4/2004

62

for each partition that fits in memory. We can
save on partitioning cost by sharing this cost
across multiple group-bys.
For OLAP databases, the size of the data to
be aggregated is usually much larger than the
available main memory. Under such con-
straints, the above optimisations are often
contradictory. For computing B, for instance,
the first optimisation will favour BC over AB
if BC is smaller but the second optimisation
will favour AB if AB is in memory and BC is
on disk.
The PipeSort Method
As I mentioned above, the PipeSort method
combines the optimisations share-sorts and
smallest-parent to get the minimum total
cost. We can use a number of statistical pro-
cedures [19] for this purpose. The input to
the algorithm is the search lattice, which is a
graph where a vertex represents a group-by
of the cube. A directed edge connects group-
by i to group-by j whenever j can be gener-
ated from i and j has exactly one attribute
less than i (i is called the parent of j). Thus,
the out-degree of any node with k attributes
is k. Figure 1 is an example of search lattice.
Level k of the search lattice denotes all

group-bys that contain exactly k attributes.
The keyword all is used to denote the empty
group-by (Level 0). Each edge in the search
lattice eij is labelled with two costs, as we
will see in the algorithm presentation as well.
The first cost S(eij) is the cost of computing j
from i when i is not already sorted. The sec-
ond cost A(eij) is the cost of computing j
from i when i is already sorted.
The output, O, of the algorithm is a subgraph
of the search lattice where each group-by is
connected to a single parent group-by from
which it will be computed and is associated
with an attribute order in which it will be
sorted. If the attribute order of a group-by j is
a prefix of the order of its parent i, then j can
be computed from i without sorting i and in
O, eij is marked A and incurs cost A(eij).
Otherwise, i has to be sorted to compute j
and in O, eij is marked S and incurs cost Sij.
Clearly, for any output O, there can be at
most one out-edge marked A from any
group-by i, since there can be only one prefix
of i in adjacent level. However, there can be
multiple out-edges marked S from i. The ob-
jective of the algorithm is to find an output O
that has minimum sum of edge costs.

Algorithm. The algorithm proceeds level-by-
level, starting from level k-0 to level k=N-1,
where N is the total number of attributes. For
each level k, it finds the best way of comput-
ing level k from level k+1 by reducing the
problem to a weighted bipartite matching
problem [20] as follows.

We first transform level k+1 of the original
search lattice by making k additional copies
of each group-by in that level. Thus each
level k+1 group-by has k+1 vertices whish is
the same as the number of children or out-
edges of that group-by. Each replicated ver-
tex is connected to the same set of vertices as

Economy Informatics, 1-4/2004

63

the original vertex in the search lattice. The
cost on an edge eij from the original vertex i
to a level k vertex j is set to A(eij) whereas all
replicated vertices of i have edge cost set to
S(eij). We then find the minimum 3 cost
matching in the bipartite graph included by
this transformed graph. In the matching so
found, each vertex h in level k will be
matched to some vertex g in level k+1. If h is
connected to g by an A() edge, then h deter-
mines the attribute order in which g will be
sorted during its computation. On the other
hand, if h is connected by an S() edge, g will
be re-sorted for computing h.
For illustration, we show how level 1 group-
bys are generated from level 2 group-bys for
a three-attribute search lattice. As shown in
Figure 2, we first make one additional copy
of each level 2 group-by. Solid edges repre-
sent the A() edges whereas dashed edges in-
dicate the S() edges. The number underneath
each vertex is the cost of all out-edges from
this vertex.

In the minimum cost matching (Figure 3), A
is connected to AB with an S() edge and B is
connected to AB with an A() edge . Thus at
level 2, group-by AB will be computed in the
attribute order BA so that B is generated
from it without sorting and A is generated by
resorting BA. Similarly, since C is connected
to AC by an A() edge, AC will be generated
in the attribute order CA. Since BC is not
matched to any level-1 group-by, BC can be
computed in any order.

The PipeHash Method
For hash based methods, the new challenge is
careful memory allocations of multiple hash-
tables for incorporating optimizations like
cache-results and amortize-scans. For in-
stance, if the hash tables for AB and AC fit in
memory then the two group-bys could be
computed on one scan of ABC. After AB is
computed one can compute A and B while
AB is still in memory and thus avoid the disk
scan for AB. If memory were not a limita-
tion, we could include all optimizations
stated at 5.4.1.1.
However, the data to be aggregated is usually
too large for the hash-tables to fit in memory.
The standard way to deal with limited mem-
ory when constructing hash tables is to parti-
tion the data on one or more attributes. When
data is partitioned on some attribute, say A,
then all groups-bys that contain A can be
computed by independently grouping on each
partition – the results across multiple parti-
tions need not be combined. We can share
the cost of data partitioning across all group-
bys that contain the partitioning attribute,
leading to the optimization share-partitions.
The algorithm PipeHash, which incorporates
this optimization and also includes the op-
timizations cache-results, amortize-scans and
smallest-parent, has as an input the search
lattice described in the previous session. The
algorithm fist chooses for each group by, the
parent group by with the smallest estimated
total size. The outcome is the minimum
spanning tree (MTS) where each vertex is a
group-by and an edge from group-by a to b
shows that a is the smallest parent of b. In
general, the available memory will not be
sufficient to compute all the group-bys in the
MST together, hence the next step is to de-
cide what group-bys to compute together,

Economy Informatics, 1-4/2004

64

when to allocate and de-allocate memory for
different hash-tables, and what attribute for
partitioning data.
Optimizations cache-results and amortize-
scans are favoured by choosing as large a
subtree of the MST as possible so that we can
use the method above to compute together
the group-bys in the subtree. However, when
data needs to be partitioned based on some
attribute, the partition attribute limits the sub-
tree to only include group-bys containing the
partitioning attribute.
4.4.1.2. Data Cube as set of materialized
views.
In ROLAP systems data cube can also be
maintained as set of materialized views. An
algorithm to implement data cube as set of
materialized views was proposed in [21]. In
this approach each cell of data cube is con-
sidered as view of aggregation of interest like
total sales. The values of many data cube
cells are dependent on the values of other
cells in the data cube. The most common op-
timization is materializing all or some of
these cells of the data cube cells. The algo-
rithm proposed in [21] is a polynomial time
greedy algorithm that works with a lattice
and determines good set of views to be mate-
rialized such that a good trade-off between
the space used and the average time to an-
swer a query is maintained.
4.4.2. MOLAP Server
MOLAP servers use multi-dimensional ar-
rays as the underlying data structure. MO-
LAP is often several times faster than
ROLAP alternative when the dimensionality
and domain size are relatively small com-
pared to available memory [7, 10, 14, 15].
However, when the number if dimensions
and their domain size increases, the data be-
come very sparse, resulting many empty cells
in the array structure. A popular technique to
deal with the sparse data is chunking [15].
The full array is chunked into small pieces
called cuboids. For non-empty cells, a pair is
stored.
MOLAP system has different sort of chal-
lenges in computing data cube than ROLAP
systems. The fundamental difference is the
different data structures used to store the

data. For MOLAP systems where cube is
stored in the form of multidimensional ar-
rays, we can use some rules of thumb to
compute data cube efficiently (eg shortest
parent) described in [8]. Unfortunately, none
of the techniques developed for ROLAP cube
computation can apply. The main reason is
that there is no equivalent of “reordering to
bring together related tuples” [15] based
upon their dimensions values.
Array based algorithm for simultaneous
multidimensional aggregates
A Multi-Way Array cubing algorithm was in-
troduced in [15]. The idea behind this ap-
proach is that the cells of the cube are visited
in the right order so that a cell does not have
to be revisited for each sub-aggregate. The
goal is to overlap the computation of all these
group-bys and finish the cube in one scan of
array with the requirement of memory mini-
mized. In case the data cube is too large so
that it can’t fit into memory, the array is split
into chunks each of which small enough to fit
into memory. Zhao [15] also introduced the
concept of optimal dimension ordering and
Minimum Memory Spanning Tree (MMST).
MMST is similar to Minimum Spanning Tree
(MST). A MMST, for a given order, is
minim in terms of the total memory require-
ment for that dimension order. The optimal
dimension order is that dimension for which
MMST requires least amount of memory. For
this method, the authors [15] have given
stress on the fact that the related group by
can be computed when the raw data is being
scanned. They made the assumption that they
would have enough memory to allocate the
required memory for related group-by nodes
in MMST.
CubiST: A new approach to speed up
OLAP queries
In [10] an in memory algorithm called Cub-
iST (Cubing with Statistical Trees), for
evaluating OLAP queries on the top of a rela-
tional data warehouse is processed. CubiST
can be considered as MOLAP approach in
spite of the fact that CubiSt does not use mul-
tidimensional arrays directly [10]. They in-
troduced a new data structures, called Statis-
tical Tree (ST) to speed up computation of

Economy Informatics, 1-4/2004

65

data cube. A statistical tree is a multi-way
tree in which an internal node contains refer-
ences to the next-level nodes which are di-
rectly used in the query evaluation. Leaf
nodes hold the statistics or histogram of data
and are linked together to facilitate scanning,
similar to B-Tree data structures. Each root-
to-leaf path in a statistical tree represents a
particular sub-cube of underlying data set. In
order to use a ST to answer cube queries over
a particular data set, one must first pre-
compute the aggregation on all sub-cubes by
scanning detailed data set. CubiST encodes
all possible aggregate views in the leaves of
the underlying ST during one time scan of
the detailed data. The algorithm requires only
one scan over detailed data set. CubiST is fo-
cused on classes of queries which return ag-
gregated values only. There is no information
given in this method regarding modelling
dimension hierarchy and about ROLL-UP,
DRILL-DOWN and SLICE AND DICE op-
erations. However, CubiST performs well in
case of dense datacube and specially when
cardinality of dimension is low.

Conclusions
The data warehousing concepts are meant to
enable the business to win in the marketplace
everyday, with every old or newly acquired
customer, with every new purchase. They are
able to determine clients’ wishes, habits,
dreams and to offer them the right product or
service that, sometimes, they were not even
conscious that really need it. The data ware-
house and OLAP research is one of the most
important activities in the universities across
the world. Huge amounts of money are in-
vested yearly to find and develop new tech-
nologies and algorithms. And I have no
doubts saying that transformations of thou-
sands of terabytes of data will be soon a mat-
ter of seconds and couple of mouse clicks.

Bibilografy
[1] S. Agrawal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F.
Naughton, R. Ramakrishnan, S. Sarawagi. On the computation
of multidimensional aggregates. 1996 – International Confer-
ence Very Large Databases, Bombay, India.
[2] R. Agrawal, A. Gupta, S. Sarawagi. Modeling multidimen-
sional databases. In Int. Conf. on Data Engineering (ICDE),
IEEE Press, pages 232-243, April 1997

[3] G. Colliat. OLAP, relational and multidimensional data-
bases systems. SIGMOND Record 25, pages 64-69, 1996
[4] E. F. Codd, S.B. Codd and C. T. Salley. Providing OLAP
(on-line analytical processing) to user analysis: An IT man-
date.In E.F. Codd & Associates, available on
www.essbase.com/resource_library/white_papers, 1993
[5] S. Chaudhuri and U. Dayal. An overview of data warehous-
ing and OLAP technology. ACM SIGMOND Record 26, pages
65-74, 1997.
[6] L. Cabbibo and R. Torlone. A logical approach to multidi-
mensional databases. In Advances in Database Technology –
EDBT’98, Number 1377 in LNCS, Springer, 1998.
[7] D. W. Cheung, B. Zhou, B. Kao, K. Hu, S. D. Lee.
DROLAP: Dense Region based OLAP. In “Data and Knowl-
edge Engineering”, Volume 36, Number 1, pages 1-27, January
2001
[8] J. Gray, A. Bosworth, A. Layman, H. Pirahesh. Datacube: A
relational aggregation operator generalizing group-by, cross-tab,
and sub-totals. In Proceedings of IEEE Conference on Data En-
gineering, pages 152-159. IEEE Computer Society, 1996.
[9] W. Leher. Modeling Large Scale OLAP Scenarios. In Ad-
vances in Database Technology – EDBT’98, Number 1377 in
LNCS, Springer, 1998.
[10] L. Fu. And Joachim Hammer. CUBIST: A New Approach
to Speeding Up OLAP Queries in Data Cubes. In Proceedings
of the ACM Third International Workshop on Data Warehous-
ing and OLAP, Washington, DC, November 2000.
[11] C. Sapia, M. Blaschka, G. Hofling. An Overview of Multi-
dimensional Data Models for OLAP, FORWISS Technical Re-
port 1999-001, available from
www.forwiss.tumuenchen.de/~system42/publications, February
1999
[12] K. Ross and D. Srivastav. Fast computation of sparse
datacube. In Proc. 23rd Int. Conf. Very Large Databases, pages
116-125, Athens, Greece, August 1997
[CM89]
[13] M. Corry, M. Abbey, I. Abramson, b. Taub. Oracle 8i
Data Warehousing. Tata McGraw Hill Publishing Co. Ltd,
2001.
[14] S. Samtani, M. Mohania, K. Vijay, and Y. Kambayashi.
Recent Advances and Research Directions in Data Warehous-
ing Technology. Australian Journal of Information Systems,
2001
[15] Y. Zhao, P. Deshpande and J. Naughton. An array-based
algorithm for simultaneous multidimensional aggregates. In
Precedings of 2001 ACM SIGMOND Conference on Manage-
ment od data, pages 159-170, Tucson, Arizona, May 2001
[16] R. S. Craig, J. A. Vivona, D. Berocovitch – Microsoft Data
Warehousing Building Distributed Decision Support Systems.
John Willy & Sons, Inc, New York, 2000
[17] Jim Gray, Adam Bosworth, Andrew Layman and Hamid
Pirahesh. Data Cube: A relational Operator Generalizing Group-
By, Cross-Tab and Sub-Totals. Proc. Of the 12th Int. Conf. on
Data Engineering, pp 152-159, 1996
[18] C. T. Ho, R. Agrawal, N. Megiddo. Techniques for Speed-
ing up Range-Max Queries in OLAP Data Cubes. In Proceed-
ings of ACM SIGMOND Conference on Management of Data,
pages 73-88, May 1997.
[19] P.J. Haas, J.F. Naughton, S. Seshadri, L. Stokes. Sampling
based estimation of the number of distinct values of an attrib-
ute.In Proceedings of the Eight International Conference on
Very Large Databases, pages 311-322, Zurich, Switzerland,
September 1995.
[20] C. H. Papadimitriou and K. Steiglitz. Combinatorial Opti-
mization: Algorithms and Complexity, chapter 11, pages 247-
254. Englewood Cliffs, N.J., Prentice Hall, 1982
[21] J.D. Ullman, V. Harynaraian, A. Rajaraman. Implementing
Datacube Efficiently. SIGMOND record (ACM Special Interest
Group on Management of Data), pages 205-216, 1996.
[22] - http://www.dmreview.com

Economy Informatics, 1-4/2004

66

