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On-Line Analytical Processing (OLAP) is a component of Decision Support System (DSS). 
OLAP queries are complex aggregated computation queries over large data set. Speed is pri-
mary goal of OLAP applications. Computation of multiple related group-bys is one of the 
core operations on OLAP. Gray [8] proposed “CUBE” operator to support processing of 
group-by queries. Currently, there are two popular technologies for OLAP implementation: 
Relational OLAP (ROLAP) and Multidimensional OLAP (MOLAP). Some efficient algorithms 
have been developed for ROLAP, but even though multidimensional OLAP is more natural 
way to represent multidimensional data, not many algorithms have been developed for MO-
LAP. MOLAP systems, though may suffer from sparsity of data, are generally more efficient 
than ROLAP when sparsity of data cube is removed or when data set varies from small to 
medium size. In this article I just want to give you an overall picture about OLAP research 
activity in the last years, along with some basic information about Data Warehousing and 
Analytical Processing. 
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Introduction 
During the past decade the demand of de-

cision support systems has emerged at a rapid 
rate. The separation of the enterprise infor-
mation architecture into two separate envi-
ronments has quickly become popular. 
Alongside with traditional On Line Transac-
tion Processing (OLTP) environment a new 
On Line Analytical Processing (OLAP) com-
ponent has been introduced, dedicated to de-
cision oriented analysis of historical data. 
The central element of new environment is 
Data Warehouse, a read only repository of 
data that is used for analysis and assist in de-
cision making of enterprise policy by the top 
executives. 
Data warehouses and related OLAP tech-
nologies [4, 5] continue to receive strong in-
terest from research community as well as 
from industry. A warehouse contains data 
from a number of independent sources, inte-
grated and cleansed to support clients who 
wish to analyse the data for trends and 
anomalies. The decision support is provided 
by OLAP tools, which present their users 
with a multidimensional perspective of the 
data warehouse and facilitate the writing of 

reports involving aggregation along the vari-
ous dimensions of the data set [4]. Because 
all these queries are often complex and the 
data warehouse database is often very large, 
processing the data queries quickly is an im-
portant prerequisite for building efficient De-
cision Support Systems (DSS). Before we in-
troduce our approach to answering complex 
OLAP queries, we first review some impor-
tant background information. 
2. What is the Data Warehouse? 
Maybe the first definition of what Data 
Warehouse means is dating from the early 
1990s: the data warehouse is the queryable 
presentation resource for an enterprise’s data 
and this presentation resource must not be 
organized around an entity-relation model 
due to lack of understandability and the per-
formance. W. H. Imon, a leading architect of 
data warehouse concept, defined a data 
warehouse as a “subject-oriented, integrated, 
time variant and non-volatile collection of 
data in support of management’s decision 
marketing process” [13] 
3. Dimensional Model 
The fundamental idea of dimensional model-
ling is that nearly every type of business data 
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can be represented as a kind of cube data, 
where the cells of the cube contain measured 
values and the edges of the cube define the 
natural dimensions of the data. Of course, the 
model allows more than three dimensions in 
the design, so we technically should call the 
cube a hypercube, although the term cube 
and data cube are used by almost everyone. 
Any point inside the cube represents the 
“place” where the measurement of the busi-
ness for that combination of dimensions is 
stored. 
Facts – A fact is “an observation in the mar-
ket place”.  It contains the measurement of 
the business. The most useful facts are nu-
meric and additive. 
Dimensions – A dimension is a collection of 
text-like attributes that are highly correlated 
with each other. The dimensions are syntacti-
cal categories that all allow us to specify 
multiple ways to look at business informa-
tion, according to natural perspectives under 
which its analysis can be performed. Each 
dimension can be organized into a hierarchy 
of levels, corresponding to data domains at 
different granularity. A level can have de-
scription associated with it. Within a dimen-
sion, values of different levels are related 
through a family of rollup functions. 
Variable – Variables are typical numerical 
measures like Sales, Cost, Profits, Expenses 
and so forth. 
Hierarchy – A hierarchy is path of aggrega-
tion of dimensions. A dimension may have 
multiple levels of granularity, which have 
parent-child relationship. A hierarchy defines 
how these levels are related. 
Member – A member is a data item in the 
dimensions. Typically, you create a caption 
or describe a measure of database using 
members. 
Datacube – Datacubes are sets of precom-
puted views or special data structure (e.g. 
multidimensional arrays) [5] of selected data 
that are formed by aggregating values across 
attributes combinations (a group by in the da-
tabase terminology). A generated cube on d 
attribute values can either be complete, that 
is it contains all 2d possible views formed by 
attribute combinations or partial, that is con-

tains only subset of 2d possible views. 
4. OLAP 
OLAP stands for “On-Line Analytical Proc-
essing” and describes a class of technologies 
that are design for ad-hoc data access and 
analysis.  
The general activity of querying and present-
ing text and numbers data from data ware-
houses, as well as a specifically dimensional 
style of querying and presenting that is ex-
emplified by a number of “OLAP vendors“. 
The OLAP vendors’ technology is non-
relational and is almost always based on an 
explicit multidimensional cube of data. 
OLAP databases are also known as multidi-
mensional databases, or MDDBs. While rela-
tional databases are good at retrieving a small 
number of records quickly, they are not good 
at retrieving large number of records and 
summarizing them on the fly [14]. Slow re-
sponse time and inordinate use of system re-
source are common characteristics of deci-
sion support built exclusively on top of rela-
tional database technology.  
4.1. FASMI 
The standard characteristic of OLAP is de-
fined as Fast Analysis of shared Multidimen-
sional Information (FASMI) [4]. 

 FAST – The system is targeted to deliver 
most of the response within seconds. 

 ANALYSIS – The system can cope with 
any business logic and statistical analysis that 
is relevant for the application and the user. It 
is certainly necessary to allow the user to de-
fine ad-hoc calculations as part of the analy-
sis and to report on data in any desired way 
without having to program. 

 SHARED – The system implements all 
security requirements for confidentiality and, 
if multiple write accesses are required, con-
current updates and locking at an appropriate 
level have to be possible. But this is an area 
of weakness in many OLAP products, which 
tends to assume that all OLAP applications 
will be read only, with simple security con-
trol.  

 MULTIDIMENSIONAL – The system 
must provide a multidimensional conceptual 
view of data including full support for hierar-
chies, as is certainly most logical way to ana-
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lyse business and organization. 

 INFORMATION – The system has to 
contain all the required information, as much 
as is relevant for application. 
4.2. OLAP Operations 

 ROLL-UP. Roll-up creates a subtotal at 
any level of aggregation needed from the 
most detailed up to the grant total. This func-
tion is also called consolidation [4]. 

 DRILL-DOWN. Drill-down breaks the 
subtotal at any level of granularity to lower 
level of granularity to lower level of granu-
larity in hierarchy, means it gives details of 
relationship at the lower level.  

 SLICING AND DICING – Selecting a 
subsection of datacube based on the con-
stants in one or few dimensions. If one di-
mension is fixed, the operation is called slice 
and if more than one dimension are fixed, the 
operation is called dice. 

 PIVOT. Pivoting is swapping of columns 
and rows. This allow user to look at data 
from different view. This is also commonly 
known as rotation [13]. 
4.3 OLAP Implementations 
Currently there are two technologies for im-
plementation of OLAP servers, namely Rela-
tional OLAP (ROLAP) and Multidimen-
sional OLAP (MOLAP) 

 OLAP might be implemented on standard 
or extended relation DBMS, called Rela-
tional OLAP (ROLAP) server (ex MetaCube 
by IBM). This server support extension to 
SQL and special access and implementation 
method to efficiently implement the multidi-
mensional data model and operations. It is 
assumed that data is stored in relation data-
bases either in the form of star or snowflake 
schema [5] or in the form of materialized 
views. 

 Multidimensional OLAP (MOLAP) serv-
ers directly store multidimensional data in 
some special data structures (such as arrays) 
and implement the OLAP operations over 
these specials data structures [5]. Oracle’s 
Oracle Express and Essbase from Hyperion 
come under this category [13]. 

 Hybrid online analytical processing 
(HOLAP) is a combination of relational 
OLAP (ROLAP) and multidimensional 

OLAP (MOLAP). HOLAP was developed to 
combine the greater data capacity of ROLAP 
with the superior processing capability of 
MOLAP. HOLAP can use varying combina-
tions of ROLAP and OLAP technology. 
Typically it stores data in a both a  relational 
database (RDB) and a multidimensional da-
tabase (MDDB) and uses whichever one is 
best suited to the type of processing desired. 
The databases are used to store data in the 
most functional way. For heavy data process-
ing, the data is more efficiently stored in a 
RDB, while for speculative processing, the 
data is more effectively stored in an MDDB. 
HOLAP users can choose to store the results 
of queries to the MDDB to save the effort of 
looking for the same data over and over 
which saves time. Although this technique - 
called "materializing cells" - improves per-
formance, it takes a toll on storage. The user 
has to strike a balance between performance 
and storage demand to get the most out of 
HOLAP. Nevertheless, because it offers the 
best features of both OLAP and ROLAP, 
HOLAP is increasingly preferred. DbMiner 
is a product that adopts HOLAP methodol-
ogy. 

 Desktop OLAP (DOLAP) is a term used 
to denote single-tier, desktop-based business 
intelligence software. Its most distinguishing 
feature is its ability to download a relatively 
small hypercube from a central point (usually 
a data mart or data warehouse). 
4.4. Related Works 
Framework design for OLAP and data cube 
computation has drawn considerable amount 
of attention of database research community 
in the last decade. There is a number of lit-
eratures available on data computation [1, 10, 
12, 15, 16] and modelling multidimensional 
database [2, 6, 7, 9, 11]. The algorithms pro-
posed in [1, 12] are for ROLAP and aims to 
support CUBE operator as SQL extension in 
existing relational database systems rather 
than providing stand-alone (source data inde-
pendent) OLAP applications. Though MO-
LAP is more natural way to implement 
OLAP operations only few [10, 15] algo-
rithms have been developed for MOLAP. 
Moreover, the most of the algorithms pro-
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posed so far are designed with the considera-
tion that we have very small memory at our 
disposal. There are few algorithms, so-called 
“in memory”, based on a big amount of 
RAM. They are not implemented yet but they 
tend to be preferred in the near future due to 
rapidly decreasing price of memory. In the 
following lines I will try to present an over-
view of related work in the field of data 
warehousing and On Line Analytical Proc-
essing. Research related to this work falls 
under these categories: OLAP servers, in-
cluding ROLAP and MOLAP, data cube 
computation, view materialization in data 
warehouse and developing framework for 
querying data cube. 
4.4.1. ROLAP Server 
ROLAP servers store the data in the rela-
tional tables using star or snowflake schema 
design [5]. In the star schema, there is a fact 
table plus one or more dimensions tables. 
The snowflake schema is a generalization of 
the star schema where the core dimensions 
have aggregation levels of different 
granularities. In the ROLAP approach, cube 
queries are translated into relational queries 
against the underlying star or snowflake 
schema using the standard relational opera-
tors such as selection, projection, relational 
join, group by, etc. However, directly execut-
ing translated SQL can be very inefficient. 
Therefore many commercial ROLAP servers 
extend SQL to support important OLAP op-
erations directly. Examples of ROLAP serv-
ers are IBM’s Metacube, Microstrategy, Sea-
gate. 
4.4.1.1. Computation and optimizing the 
computation of data cube 
The first published work on methods of op-
timising the computation of data cube is re-
ferring to storing collections of group-bys 
[1]. Computing the cube stored on some rela-
tional tables requires generalization of stan-
dard relational aggregation operator. Two ba-
sic methods have been studied for computing 
single group-bys:  

 Sort Based Method PipeSort 
 Hash Base Method PipeHash 

These two methods have been adapted to 
compute multiple group-bys as well by in-

corporating the following optimisations: 
1. Smallest-parent – This optimisation, first 
proposed in [18], aims at computing a group-
by from the smallest previously computed 
group by. In general, each group-by can be 
computed from a number of other group-bys. 
Figure 1 shows a four-attribute cube (ABCD) 
and the options for computing a group-by 
from a group-by having one more attribute 
called its parent. For instance, AB can be 
computed from ABC, ABD or ABCD. ABC 
and ABD are clearly better choices for com-
puting AB. In addition, even between ABC 
and ABD, there can often be big difference in 
size making it critical to consider size in se-
lecting a parent for computing AB.  
2. Amortize-scans: This optimisation aims 
at amortising disk reads by computing as 
many group-bys as possible, together in 
memory. For instance, if the group-by ABCD 
is stored on disk, we could reduce disk read 
costs if all of ABC, ACD, ABD and BCD 
were computed in one scan of ABCD. 
3. Cache-results: This optimisation aims at 
caching (in memory) the results of a group-
by from which other group-bys are computed 
to reduce disk I/O. For instance, for the cube 
in Figure 1, having computed ABC, we com-
pute AB from it while ABC is still in mem-
ory. 
4. Share-sorts: This optimisation is specific 
to the sort based algorithms and aims at shar-
ing sorting cost across multiple group-bys. 
For instance, if we sort the raw data on at-
tribute order ABCD, then we can compute 
groups-bye ABCD, ABC, AB and A without 
additional sorts. However, this decision could 
conflict with the optimisation smallest-
parent. For instance, the smallest parent of 
AB might be BDA although by generating 
AB from ABC we are able to share the sort-
ing cost. So it’s necessary to do a global 
planning to decide what group-by is com-
puted from what and the attribute order in 
which it is computed. Here comes into pic-
ture the PipeSort algorithm. 
5. Share-partitions: This optimisation is 
specific to the hash-based algorithms. When 
the hash-table is too large to fit in memory, 
data is partitioned and aggregation is done 
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for each partition that fits in memory. We can 
save on partitioning cost by sharing this cost 
across multiple group-bys.  
For OLAP databases, the size of the data to 
be aggregated is usually much larger than the 
available main memory. Under such con-
straints, the above optimisations are often 
contradictory. For computing B, for instance, 
the first optimisation will favour BC over AB 
if BC is smaller but the second optimisation 
will favour AB if AB is in memory and BC is 
on disk. 
The PipeSort Method 
As I mentioned above, the PipeSort method 
combines the optimisations share-sorts and 
smallest-parent to get the minimum total 
cost. We can use a number of statistical pro-
cedures [19] for this purpose. The input to 
the algorithm is the search lattice, which is a 
graph where a vertex represents a group-by 
of the cube. A directed edge connects group-
by i to group-by j whenever j can be gener-
ated from i and j has exactly one attribute 
less than i (i is called the parent of j). Thus, 
the out-degree of any node with k attributes 
is k. Figure 1 is an example of search lattice. 
Level k of the search lattice denotes all 

group-bys that contain exactly k attributes. 
The keyword all is used to denote the empty 
group-by (Level 0). Each edge in the search 
lattice eij is labelled with two costs, as we 
will see in the algorithm presentation as well. 
The first cost S(eij) is the cost of computing j 
from i when i is not already sorted. The sec-
ond cost A(eij) is the cost of computing j 
from i when i is already sorted.  
The output, O, of the algorithm is a subgraph 
of the search lattice where each group-by is 
connected to a single parent group-by from 
which it will be computed and is associated 
with an attribute order in which it will be 
sorted. If the attribute order of a group-by j is 
a prefix of the order of its parent i, then j can 
be computed from i without sorting i and in 
O, eij is marked A and incurs cost A(eij). 
Otherwise, i has to be sorted to compute j 
and in O, eij is marked S and incurs cost Sij. 
Clearly, for any output O, there can be at 
most one out-edge marked A from any 
group-by i, since there can be only one prefix 
of i in adjacent level. However, there can be 
multiple out-edges marked S from i. The ob-
jective of the algorithm is to find an output O 
that has minimum sum of edge costs.  

 

 
 
Algorithm. The algorithm proceeds level-by-
level, starting from level k-0 to level k=N-1, 
where N is the total number of attributes. For 
each level k, it finds the best way of comput-
ing level k from level k+1 by reducing the 
problem to a weighted bipartite matching 
problem [20] as follows. 

We first transform level k+1 of the original 
search lattice by making k additional copies 
of each group-by in that level. Thus each 
level k+1 group-by has k+1 vertices whish is 
the same as the number of children or out-
edges of that group-by. Each replicated ver-
tex is connected to the same set of vertices as 
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the original vertex in the search lattice. The 
cost on an edge eij from the original vertex i 
to a level k vertex j is set to A(eij) whereas all 
replicated vertices of i have edge cost set to 
S(eij). We then find the minimum 3 cost 
matching in the bipartite graph included by 
this transformed graph. In the matching so 
found, each vertex h in level k will be 
matched to some vertex g in level k+1. If h is 
connected to g by an A() edge, then h deter-
mines the attribute order in which g will be 
sorted during its computation. On the other 
hand, if h is connected by an S() edge, g will 
be re-sorted for computing h. 
For illustration, we show how level 1 group-
bys are generated from level 2 group-bys for 
a three-attribute search lattice. As shown in 
Figure 2, we first make one additional copy 
of each level 2 group-by. Solid edges repre-
sent the A() edges whereas dashed edges in-
dicate the S() edges. The number underneath 
each vertex is the cost of all out-edges from 
this vertex.  

 
In the minimum cost matching (Figure 3), A 
is connected to AB with an S() edge and B is 
connected to AB with  an A() edge . Thus at 
level 2, group-by AB will be computed in the 
attribute order BA so that B is generated 
from it without sorting and A is generated by 
resorting BA. Similarly, since C is connected 
to AC by an A() edge, AC will be generated 
in the attribute order CA. Since BC is not 
matched to any level-1 group-by, BC can be 
computed in any order. 
 

 
 
The PipeHash Method 
For hash based methods, the new challenge is 
careful memory allocations of multiple hash-
tables for incorporating optimizations like 
cache-results and amortize-scans. For in-
stance, if the hash tables for AB and AC fit in 
memory then the two group-bys could be 
computed on one scan of ABC. After AB is 
computed one can compute A and B while 
AB is still in memory and thus avoid the disk 
scan for AB. If memory were not a limita-
tion, we could include all optimizations 
stated at 5.4.1.1. 
However, the data to be aggregated is usually 
too large for the hash-tables to fit in memory. 
The standard way to deal with limited mem-
ory when constructing hash tables is to parti-
tion the data on one or more attributes. When 
data is partitioned on some attribute, say A, 
then all groups-bys that contain A can be 
computed by independently grouping on each 
partition – the results across multiple parti-
tions need not be combined. We can share 
the cost of data partitioning across all group-
bys that contain the partitioning attribute, 
leading to the optimization share-partitions. 
The algorithm PipeHash, which incorporates 
this optimization and also includes the op-
timizations cache-results, amortize-scans and 
smallest-parent, has as an input the search 
lattice described in the previous session. The 
algorithm fist chooses for each group by, the 
parent group by with the smallest estimated 
total size. The outcome is the minimum 
spanning tree (MTS) where each vertex is a 
group-by and an edge from group-by a to b 
shows that a is the smallest parent of b. In 
general, the available memory will not be 
sufficient to compute all the group-bys in the 
MST together, hence the next step is to de-
cide what group-bys to compute together, 
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when to allocate and de-allocate memory for 
different hash-tables, and what attribute for 
partitioning data. 
Optimizations cache-results and amortize-
scans are favoured by choosing as large a 
subtree of the MST as possible so that we can 
use the method above to compute together 
the group-bys in the subtree. However, when 
data needs to be partitioned based on some 
attribute, the partition attribute limits the sub-
tree to only include group-bys containing the 
partitioning attribute. 
4.4.1.2. Data Cube as set of materialized 
views. 
In ROLAP systems data cube can also be 
maintained as set of materialized views. An 
algorithm to implement data cube as set of 
materialized views was proposed in [21]. In 
this approach each cell of data cube is con-
sidered as view of aggregation of interest like 
total sales. The values of many data cube 
cells are dependent on the values of other 
cells in the data cube. The most common op-
timization is materializing all or some of 
these cells of the data cube cells. The algo-
rithm proposed in [21] is a polynomial time 
greedy algorithm that works with a lattice 
and determines good set of views to be mate-
rialized such that a good trade-off between 
the space used and the average time to an-
swer a query is maintained. 
4.4.2. MOLAP Server 
MOLAP servers use multi-dimensional ar-
rays as the underlying data structure. MO-
LAP is often several times faster than 
ROLAP alternative when the dimensionality 
and domain size are relatively small com-
pared to available memory [7, 10, 14, 15]. 
However, when the number if dimensions 
and their domain size increases, the data be-
come very sparse, resulting many empty cells 
in the array structure. A popular technique to 
deal with the sparse data is chunking [15]. 
The full array is chunked into small pieces 
called cuboids. For non-empty cells, a pair is 
stored. 
MOLAP system has different sort of chal-
lenges in computing data cube than ROLAP 
systems. The fundamental difference is the 
different data structures used to store the 

data. For MOLAP systems where cube is 
stored in the form of multidimensional ar-
rays, we can use some rules of thumb to 
compute data cube efficiently (eg shortest 
parent) described in [8]. Unfortunately, none 
of the techniques developed for ROLAP cube 
computation can apply. The main reason is 
that there is no equivalent of “reordering to 
bring together related tuples” [15] based 
upon their dimensions values. 
Array based algorithm for simultaneous 
multidimensional aggregates 
A Multi-Way Array cubing algorithm was in-
troduced in [15]. The idea behind this ap-
proach is that the cells of the cube are visited 
in the right order so that a cell does not have 
to be revisited for each sub-aggregate. The 
goal is to overlap the computation of all these 
group-bys and finish the cube in one scan of 
array with the requirement of memory mini-
mized. In case the data cube is too large so 
that it can’t fit into memory, the array is split 
into chunks each of which small enough to fit 
into memory. Zhao [15] also introduced the 
concept of optimal dimension ordering and 
Minimum Memory Spanning Tree (MMST). 
MMST is similar to Minimum Spanning Tree 
(MST). A MMST, for a given order, is 
minim in terms of the total memory require-
ment for that dimension order. The optimal 
dimension order is that dimension for which 
MMST requires least amount of memory. For 
this method, the authors [15] have given 
stress on the fact that the related group by 
can be computed when the raw data is being 
scanned. They made the assumption that they 
would have enough memory to allocate the 
required memory for related group-by nodes 
in MMST.  
CubiST: A new approach to speed up 
OLAP queries 
In [10] an in memory algorithm called Cub-
iST (Cubing with Statistical Trees), for 
evaluating OLAP queries on the top of a rela-
tional data warehouse is processed. CubiST 
can be considered as MOLAP approach in 
spite of the fact that CubiSt does not use mul-
tidimensional arrays directly [10]. They in-
troduced a new data structures, called Statis-
tical Tree (ST) to speed up computation of 
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data cube. A statistical tree is a multi-way 
tree in which an internal node contains refer-
ences to the next-level nodes which are di-
rectly used in the query evaluation. Leaf 
nodes hold the statistics or histogram of data 
and are linked together to facilitate scanning, 
similar to B-Tree data structures. Each root-
to-leaf path in a statistical tree represents a 
particular sub-cube of underlying data set. In 
order to use a ST to answer cube queries over 
a particular data set, one must first pre-
compute the aggregation on all sub-cubes by 
scanning detailed data set. CubiST encodes 
all possible aggregate views in the leaves of 
the underlying ST during one time scan of 
the detailed data. The algorithm requires only 
one scan over detailed data set. CubiST is fo-
cused on classes of queries which return ag-
gregated values only. There is no information 
given in this method regarding modelling 
dimension hierarchy and about ROLL-UP, 
DRILL-DOWN and SLICE AND DICE op-
erations. However, CubiST performs well in 
case of dense datacube and specially when 
cardinality of dimension is low. 
 
Conclusions 
The data warehousing concepts are meant to 
enable the business to win in the marketplace 
everyday, with every old or newly acquired 
customer, with every new purchase. They are 
able to determine clients’ wishes, habits, 
dreams and to offer them the right product or 
service that, sometimes, they were not even 
conscious that really need it. The data ware-
house and OLAP research is one of the most 
important activities in the universities across 
the world. Huge amounts of money are in-
vested yearly to find and develop new tech-
nologies and algorithms. And I have no 
doubts saying that transformations of thou-
sands of terabytes of data will be soon a mat-
ter of seconds and couple of mouse clicks. 
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