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The papaer presents the essential aspects concerning the equilibrium at the producer’s level in 
the measurable uncertainty. As a result, the selling price under uncertain ty can be expressed 
as a function of the price under certainty, and thus is obtain the programm and the equation 
which lead to the solution, in all the situations presented. 
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he dihotomy between risk and uncertainty 
was first presented by F.H. Knight in 1921, 

as it follows : 
− The risk represents the measurable uncer-
tainty, that is the evolution of a phenomenon is 
influenced by the probabilities for different states 
of the nature (in this case, the situation is known 
as the risky situation); 
− The unmeasurable uncertainty represents 
the opposite case (the situation is known as the 
uncertain situation). 
We will presents in the following a producer, for 
which we know: 
- The quantity produced and offered by the 
producer, q; 
- 0p - the selling price under certainty envi-
ronment; 
- )(qC - the variable cost; 
- CF - the fix cost; 
- Π - the payoff; 
The payoff under the certainty environment, at 
the producer’s level will be: 

CFqCqp −−=Π )(0 . 

We will assume that the market price is uncertain 
and that its distribution is given by the lottery: 
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As a result, the selling price for the uncertainty 
case can be expressed as a function of the price 
under certainty: 
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si 0)~( =yE  ( y~ is a normal lottery with fair 
probability) 
The optimum quantity which a producer can of-
fer results from solving the optimum problem:  
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where: Π~  - is the random payoff; 0w  - is the 
initial endowment; 
But: =+−− ))(~( 0wCFqCqpEU  
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and so: 
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The first order condition leads to: 
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From 0)( >•′U  and 0)( =•E  results that 
pqCp ≤′≤ )( . 

We will make the following notation: 
**q - the optimum quantity produced by the firm 

under uncertainty, at the price p~ ; 
*q - the optimum quantity produced by the firm 

under certainty at the price 0p ; 
*q  - the optimum quantity produced by the firm 

under certainty at the price p ; 
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*q  - the optimum quantity produced by the firm 
under certainty,  
at the price p ; 

As a result, we have the following table which 
presents the programm and the equation which 
leads to the solution, in any situation: 

Table 1. 
Price Quantity The program The equation 
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Example  1. We consider a firm which can pro-
duce, from technical point of view, a maximum 
number of 150 units, for which we have. 

(euro) u.m. 000.500 =w  
(euro) u.m. 000.3=CF  
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− the firm procedure is completly guided by the 
utility function wwU =)( ; 

− under certainty, the firm will seel at the price 
euro; 3000 =p  

− under uncertainty, the selling price will be 
euro 100=p and euro, 500=p with equal 

probabilities. 

We look for the optimum quantity produced by 
the firm in the next situations: 
a) there is no uncertainty on the price; 
b) tehre are 2 bounded cases in the certain fu-
ture, p and ;p  

c) there is uncertainty on the price. 
Solution: 
a) From the optimum problem: 

CFqCqp
q
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applying the optimum necessary condition we 

get 0=Π
dq
d  which leads to  
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Observation: For a quantity between 0 and 70 
units, the marginal payoff is positive (50 euro for 
each unit), which leads to a growth in the ob-
tained quantity till the 70 units, because one unit 
extra (the 71 unit) will lead to a 100 euro loss. 
Consequenty, the optimum quantity will be of 70 
units, ,70=∗q which leads to a payoff of  

euro. 50030002507030070 =−×−×  
b) We study each case: 
• For 100=p euro, the optimum problem is: 

CFqCqp
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The necessary optimum condition is: 
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In this case, as we can see, every unit of goods, 
if would be produced, would automaticly lead to 
losses.  
So, the firm will take the decision not to pro-
duce: ,0=∗q  and the payoff will actually be a 
loss of 3000 euro, beacuse of the fix cost. 
• for euro 500=p we’ll have, as before: 

CFqCqp
q
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CNO: 0=Π
dq
d , this leads to 





≤<

≤≤
−=′−

150q70 daca 400,

70q0 daca ,250
500)(qCp





≤<

≤≤
=

150q70 daca 100,

70q0 daca ,250
 

We can see that the marginal payoff is positive 
on the both branches, so we can get 150=∗q  
units (each extra unit produced till 150 will bring 
a payoff). 
The payoff will be of: 150*500-400*150+ 
+10500-3000=22500 euro. 

c) The optimum problem in this case is: 
=+−−=+Π ))(~()~([max] 00 wCFqCqpEUwEU
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Aplying the first order condition we get: 
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or: 
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both branches being impossible . 
As a conclusion, the firm can not offer a produc-
tion under the conditions form the c), meaning 
that: ;0=∗∗q  this implies that the random payoff 
will actually be a loss of 3000 euro with the 

probability of 
2
1 both at the price p , as at the 

price .p  
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