Economy Informatics, 2003

63

Some Consider ations on Using Data Structures Combined
with TreeView Control

Prof essor,Ph.D. MihaelaMUNTEAN, lecturer,Ph.D. MirelaVOICU
West University of Timisoara, ROMANIA

Lists and binary trees structures represents a higher programming technique level. In RAD
environments TreeView control is a powerful tool to see data in a hierarchical fashion or to
observe the data structures functionality. We manage to transform the TreeView component
in a strong data structures mastering control and suggest its using in application develop-
ment. We now present, choosing Delphi for implementation, some techniques to illustrate the

presented above.

Introduction

A data dtructure is a construct that you
can define within a programming language to
store a collection of data for easy access and
frequent manipulation. It must provide the
structural order for organizing data, while
maintain access flexibility to allow fast and
easy movement from one data item to ar
other.
A well-organized data structure can speed up
the computational process — the agorithm
specified by the program — by a significant
amount of running time. Linked lists and tree
data structures are flexible dynamic data
structures representing a powerful tool for
organizing data objects based on keys.
On the other hand, the TreeView control
manages to display a set of objects as an in-
dented outline based on their logical hierar-
chical relationship. In Delphi, the TreeView
component is an instance of the TTreeView
class and each node is an instance o the
TTreeNode class. A TreeView's list of
TTreeNode objects is maintained by its Items
property. This property is itself an instance of
the TTreeNodes class.
We succeed to transform the TreeView con-
trol from a simple outlining tool in a strong
data structure mastering control. This inter-
face component will be used in manipulating
a set of dynamic linked lists, the paper sug-
gesting some proper programming tech-
niques. In addition, the TreeView control
will take over, al the modifications made on
abinary treestructure.

2. Operating with list data structures
through a TreeView Control

TreeViews are powerful tools if you need to
see data in a hierarchical fashion. Objects
classified in categories, groups, subgroups
and assortments can be displayed within a
TreeView control by extracting the necessary
information from a specific text file — Figure
1

All object assortments are stored in a table
data structure; each table element contains an
object code and two pointers to the first and
last element of the corresponding object @-
erations dynamic list.

The entire outline is load and saved in aform
of tabbed text to disk using the TreeView's
LoadFromFile() and SaveToFile() methods.
Each tab represents one level of indent in the
TreeView’shierarchy. The node' scontextual
menu establishes the potential operations at
each TreeView’'slevel and initiates the corre-
sponding processing sequence on the defined

data structures (1).
Type
TCperation = record

end;
TPoi nt Node = "“Node;
TNode = record

Op : TOperation;
Next : TPoi ntNode;
end; (1)
TOoj = record
Code : String[30];
First, Last : TPoi nt Node;
end,
Public
bjects : array [1..Nrmax] of TQoj;

Economy Informatics, 2003

& <1 Categom 1
B <0 Group 1

Ty
?
!

E <1» Subgroup 1
%2, €0.101.1.01> Object 1
%z <0.101.1.02> Object 2
[El <2» Subgroup 2
L2z <0.101.2.01> Dbject 3

Bl <3» Subgroup 3

L% <0101.2.01> Object 4
—[E] <02 Group 2

& «2» Categaom 2

HEB <M Group 1

l—El <1 Subgroup 1

% <0.201.1.01> Object 5
B «02r Group 2

T
!
}

—E <03 Group 3
—&] «3» Category 3

Fig.1. The TreeView control as a data structure mastering control

The TreeView's content saving is followed

by the list data structures storage to disk in a
distinct file (2).

Type
TOper ati onFi | eRec=record
Code : String[30];
Q : TQperation; (2)
end;
Public F: File of TQperationRecFile;

We start by detailing the new object inserting
mechanism The new object represents a new
node in the TreeView control (3) and a new
position in the table data structure. The new
child node is added within the selected sub-
group by using the AddChild() method with
specifying the node' s label.

procedur e TMainForm AddQbj ect d i ck(Sender:
Thj ect) ;
Var DO : TEditOojD G
S : String;
Aux : TOperationFil eRec;
begi n
D O H ntsActive
DO Add : = True;
if EditObj D gRun(DIO then with Tree do
begin S:=".'+D QO Code;
S ="' +CGet Cod(It ens|
Selectedlten]. Text)+S;, (3)
S: =CGet Cod(I tens[Sel ectedl teni.
Parent. Text)+ S
S: = 0."' +CGet Cod(|t enms|[
Sel ectedlten]. Rarent. Parent.
Text) +S;
i f CanAdd(S) then
begi n
It ens[Sel ect edl ten] . Expand;
Sel ectedl tem =
AddChi | d(Sel ectedl tem ' *' +
"< +S+ > +Dl Q Nane) ;
Aux. Code : = S;
Aux. Qp := DIQ Op;
New(hj ect (Aux) ;
end;

;= H ntsActive;

end
end;

At the same time the corresponding opera
tions list must be initialized by creating it's
first item (4).

procedure Trai nFor m NewObj ect (R :

Fil eRec);

begin Inc(Nr);

Wth Objects[N] do
Begi n Code := R Code;

New(First);
First*Qp := R Qp;
First.Next := nil;
Last := First;

TQperation-

(4)

end;
end;

A new operation ecording requires object
localization in the table data structure and in-

serting a new element in the suitable opera
tions list (5).

procedure TMai nFor m AddQper ati ond i ck(Sender:
Toj ect) ;
var
DI O:
Poz :
Begi n
with Tree do
begi n
DI O H ntsActive := H ntsActive;
DI O Qbj : = Copy(ltens[Selectedlteni.
Text, 2, 255) ;
i f GetCurent Obj Pos(Poz) then
begin
Dl Q Pozl nQoj := Poz; (5)
if EditQperD gRun(DI O then
if DO Op. Dat a<=(oj ect s[Poz] . Cap”.
p. Data then
MessageBox3SD(' Er', | CON_ERROR, ' ',
&K', "', H ntsActive)

DO);

TEdi t Oper DI G,
I nt eger;

el se
I nsert Qper (Poz,
end;
end;
end;

Economy Informatics, 2003 65
The new item will be inserted after an indi- We get use the following program:
cated node P by respecting the imposed sor t-
ina criteria (6) procedure TFornR. Buttonld i ck(Sender: To-
g : ject);)
procedure TMai nForm | nsertOper(Poz : Integer; procedure Greatefr ee(\::?lrt ttr.e%%?jte‘) .
O : TOperation); L . ' '
var P, Q: TPoi nt Node; \l;:gi ;](Integer;
begi n L : : - oy -
: X 1= strtoint(inputbox('',"Value','"));
if Poz>0 then if x<>0 then
. . begi n
i@xuon%r%t a(Poz, Op. Data,) {new node in binary tree data structure}
. = Op; newt)
Q. Next := P%. Next; }a. ng ?;é;ﬁxin TreeVi ewl} (9)
P Next 1= Q (6) o : . .
r:=treevi ewl. | t ens. addchi | dobj ect (
o r,inttostr(x),t);
o createtree(t™. left,r);
end; v createtree(t”.right,r);
procedure TMai nFor m Posi ti onFor Data(Poz : In- end)
teger; Data : TDateTime, var P : TPoint Node); else t:=nil;
var end;
found : Bool ean; .
begi n begi n
P : = (bj ects[Poz]. Cap; {tree.root}
found : = Fal se; new(p) ; o ”
while (PM.Urme>nil) and not found do p". nunber: =strtoint (i nput box(" ",
begi n)) . Value:',""));
{first itemin TreeVi ewl}

found := P*. Urm. Op. Dat a>=Dat a;

if not found then P := P*.Um

end;
end;
The entire data structures manipulation is ini-
tiated through and controlled by the Tree-
View control. The little sample code pre-
sented above is sufficient to illustrate the
TreeView's use for mastering data structure.

3. Managing binary tree data structures
with a TreeView control
Now, we present some methods, which con-
cern the TreeView using in the binary tree
dynamical data structure visuaization.
We can add an item in the TreeView and a
new node in the binary tree, simultaneoudly,
as in the following situation: we consider a
simple binary tree described with the data
structures (7):
type
poi nt = ~nod;
nod = record

nunber: integer;

left,right : point;
end;

with the unit variables (8)

(7)

var
Form2 : TForm2;
p: point;
rl: ttreenode;

(8)

rl:=treeviewl. |tens.addobject(
nil,inttostr(p”. nunber), p);

createtree(p”.left,rl);

rl:=treeviewl. | tens[0];
createtree(p™.right,rl);

treevi ewl. Ful | Expand
end;

In Figure 2 we present the result in execution
for a certain binary tree data structures.
Another method used to view a binary tree
dynamical data structure using a TreeView
control, is the following: firstly we operate
on the data structure (create, new node inser-
tion, node deleting). Secondly, we represent
in the TreeView the data structure curent
form (we traverse the data structure and we
add anew item in TreeView).

For exemplify these methods we consider a
ordered binary tree dynamical data structure
described with (10):

type
poi nt = “nod;
nod = record (10)
nunber : integer;
left,right poi nt
end;
and with the unit variables (11):
var
I, z:integer;
p: poi nt; (11)

r1: TTr eeNode;

Economy Informatics, 2003

<
b

s Binary Tree

Fig.2. Data structure and its representation in TreeView

For the binary tree visuaization in TreeView
— Figure 3, we use the following program:

procedure TForml. Button2d i ck(Sender:
Tj ect);
procedure preorder(var root: point;
r: TTreeNode) ;

begi n
if root<>nil then
begi n
r:=treeviewl. |tens. AddChi | dObj ect (
r,inttostr(root”. nunber),root);

" Forml

-8
..... q
.- § i
preorder(root”™. left,r);
preorder(root”™.right,r);
end;
end;
begi n (12)

treeviewl. Itens. d ear;

{ first itemin TreeVi ewl}

rl:=treeviewl.|tens. AddQoject(nil,
inttostr(p”. nunber), p);

preorder(p”.left,rl);

rl:=treeviewl.itens[0];

preorder (p™.right,rl);

end;

=101 x|

first node |

niew hiode in binary tree i

delete a node

Tree traversal [preorder]

Fig.3. Ordered binary tree visudization with TreeView

4. The TreeView data structure mastering
control

Through the TreeView control users can es-
tablish the desired operations on a data struc-
ture. On the other hand, all data structure mo-

difications are reflected by the interface con
trol. Therefore, we define a new component -
the TreeView data structure mastering con-
trol — as an interface for managing data struc-
ture - Figure 4.

= @

Data
structure

Fig. 4. The TreeView data structure mastering control

Economy Informatics, 2003

67

Programming our own methods for operating
with the data structure through the classical
TreeView component, we can define the
principal properties and methods for the
proposed TreeView. These are based on the
native TreeView control properties and
methods added with the adequate code for
implementing the corresponding data struc-
ture operations.

5. Conclusions

A TreeView data structure mastering control
can be implemented in al RAD environ
ments that support applications development

based on dynamic linked data structure algo-
rithms. The data access flexibility that allows
rapid movement from one data item to ar
other is visualy strengthened by the Tree-
View's facilities.

References

1. Cretu, V., Sructuri de date s tehnici de
programare, vol. |, Editura “Orizonturi
universitare”, Timisoara, 2000

2. Muntean M., Using dynamic object lists
in economic applications design, Buche-
rest, 2001

3. *** Delphi 6, Development Guide

