
Economy Informatics, 2003

63

Some Considerations on Using Data Structures Combined
with TreeView Control

Professor, Ph.D. Mihaela MUNTEAN, lecturer, Ph.D. Mirela VOICU
West University of Timisoara, ROMANIA

Lists and binary trees structures represents a higher programming techniq ue level. In RAD
environments TreeView control is a powerful tool to see data in a hierarchical fashion or to
observe the data structures functionality. We manage to transform the TreeView component
in a strong data structures mastering control and suggest its using in application develop-
ment. We now present, choosing Delphi for implementation, some techniques to illustrate the
presented above.

Introduction
A data structure is a construct that you

can define within a programming language to
store a collection of data for easy access and
frequent manipulation. It must provide the
structural order for organizing data, while
maintain access flexibility to allow fast and
easy movement from one data item to an-
other.
A well-organized data structure can speed up
the computational process – the algorithm
specified by the program – by a signif icant
amount of running time. Linked lists and tree
data structures are flexible dynamic data
structures representing a powerful tool for
organizing data objects based on keys.
On the other hand, the TreeView control
manages to display a set of objects as an in-
dented outline based on their logical hiera r-
chical relationship. In Delphi, the TreeView
component is an instance of the TTreeView
class and each node is an instance of the
TTreeNode class. A TreeView’s list of
TTreeNode objects is maintained by its Items
property. This property is itself an instance of
the TTreeNodes class.
We succeed to transform the TreeView con-
trol from a simple outlining tool in a strong
data stru cture mastering control. This inte r-
face component will be used in manipulating
a set of dynamic linked lists, the paper sug-
gesting some proper programming tec h-
niques. In addition, the TreeView control
will take over, all the modifications made on
a binary tree structure.

2. Operating with list data structures
through a TreeView Control
TreeViews are powerful tools if you need to
see data in a hierarchical fashion. Objects
classified in categories, groups, subgroups
and assortments can be displayed within a
TreeView control by extracting the necessary
information from a specific text file – Figure
1.
All object assortments are stored in a table
data structure; each table element contains an
object code and two pointers to the first and
last element of the corresponding object op-
erations dynamic list.
The entire outline is load and saved in a form
of tabbed text to disk using the TreeView’s
LoadFromFile() and SaveToFile() methods.
Each tab represents one level of indent in the
TreeView’s hierarchy. The node’s contextual
menu establishes the potential operations at
each TreeView’s level and initiates the corre-
sponding processing sequence on the defined
data structures (1).
Type

TOperation = record
 ...

 end;
TPointNode = ^Node;
TNode = record
 Op : TOperation;
 Next : TPointNode;
 end; (1)
TObj = record
 Code : String[30];
 First, Last : TPointNode;
 end;
Public
Objects : array [1..Nrmax] of TObj;

1

Economy Informatics, 2003 64

Fig. 1 . The TreeView control as a data structure mastering control

The TreeView’s content saving is followed
by the list data structures storage to disk in a
distinct file (2).

Type
TOperationFileRec=record
 Code : String[30];
 Op : TOperation; (2)
 end;
Public F : File of TOperationRecFile;

We start by detailing the new object inserting
mechanism. The new object represents a new
node in the TreeView control (3) and a new
position in the table data structure. The new
child node is added within the selected sub-
group by using the AddChild() method with
specifying the node’s label.

procedure TMainForm.AddObjectClick(Sender:

 TObject);
Var DIO : TEditObjDIO;

S : String;
Aux : TOperationFileRec;

begin
 DIO.HintsActive := HintsActive;
 DIO.Add := True;
 if EditObjDlgRun(DIO) then with Tree do
 begin S:='.'+DIO.Code;
 S:='.'+GetCod(Items[
 SelectedItem].Text)+S; (3)
 S:=GetCod(Items[SelectedItem].
 Parent.Text)+ S;
 S:='o.'+GetCod(Items[
 SelectedItem].Parent.Parent.
 Text)+S;
 if CanAdd(S) then
 begin
 Items[SelectedItem].Expand;
 SelectedItem:=
 AddChild(SelectedItem,'*'+
 '<'+S+'>'+DIO.Name);
 Aux.Code := S;
 Aux.Op := DIO.Op;
 NewObject(Aux);
 end;
 end
end;

At the same time the corresponding opera-
tions list must be initialized by creating it’s
first item (4).

procedure TmainForm.NewObject(R : TOperation-
FileRec);
begin Inc(Nr);
 With Objects[Nr] do
 Begin Code := R.Code;
 New(First); (4)
 First^Op := R.Op;
 First.Next := nil;
 Last := First;
 end;
end;

A new operation recording requires object
localization in the table data structure and in-
serting a new element in the suitable opera-
tions list (5).

procedure TMainForm.AddOperationClick(Sender:
TObject);
var

DIO : TEditOperDIO;
Poz : Integer;

Begin
 with Tree do
 begin
 DIO.HintsActive := HintsActive;
 DIO.Obj:= Copy(Items[SelectedItem].
 Text,2,255);
 if GetCurentObjPos(Poz) then
 begin
 DIO.PozInObj := Poz; (5)
 if EditOperDlgRun(DIO) then
 if DIO.Op.Data<=Objects[Poz].Cap^.
 Op.Data then
 MessageBox3SD('Er',ICON_ERROR,'',
 '&Ok','',HintsActive)
 else
 InsertOper(Poz, DIO.Op);

 end;
end;

end;

Economy Informatics, 2003

65

The new item will be inserted after an indi-
cated node P by respecting the imposed sor t-
ing criteria (6).

procedure TMainForm.InsertOper(Poz : Integer;
Op : TOperation);
var P, Q : TPointNode;
begin
 if Poz>0 then
 begin
 PositionForData(Poz, Op.Data, P);
 New(Q);
 Q^.Op := Op;
 Q^.Next := P^.Next;
 P^.Next := Q; (6)

 end;
end;

procedure TMainForm.PositionForData(Poz : In-
teger; Data : TDateTime; var P : TPointNode);
var
 found : Boolean;
begin
 P := Objects[Poz].Cap;
 found := False;
 while (P^.Urm<>nil) and not found do
 begin
 found := P^.Urm^.Op.Data>=Data;
 if not found then P := P^.Urm;
 end;
end;

The entire data structures manipulation is in i-
tiated through and controlled by the Tree-
View control. The little sample code pre-
sented above is sufficient to illustrate the
TreeView’s use for mastering data structure.

3. Managing binary tree data stru ctures
with a TreeView control
Now, we present some methods, which con-
cern the TreeView using in the binary tree
dynamical data structure visualization.
We can add an item in the TreeView and a
new node in the binary tree, simultaneously,
as in the following situation: we consider a
simple binary tree described with the data
structures (7):

type
point = ^nod;
nod = record
 number: integer; (7)
 left,right : point;
 end;

with the unit variables (8)

var
 Form2 : TForm2;
 p : point; (8)
 r1: ttreenode;

We get use the following program:

procedure TForm2.Button1Click(Sender: TOb-
ject);
procedure CreateTree(var t:point;
 r:ttreenode);
var x: integer;
begin
 x := strtoint(inputbox('','Value',''));
 if x<>0 then
 begin
 {new node in binary tree data structure}
 new(t);
 t^.number:=x;
 {a new item in TreeView1} (9)
 r:=treeview1.Items.addchildobject(
 r,inttostr(x),t);
 createtree(t^.left,r);
 createtree(t^.right,r);
 end
 else t:=nil;
end;

begin
 {tree root}
 new(p);
 p^.number:=strtoint(inputbox('',
 'Value:',''));
 {first item in TreeView1}
 r1:=treeview1.Items.addobject(
 nil,inttostr(p^.number),p);
 createtree(p^.left,r1);
 r1:=treeview1.Items[0];
 createtree(p^.right,r1);
 treeview1.FullExpand
end;

In Figure 2 we present the result in execution
for a certain binary tree data structures.
 Another method used to view a binary tree
dynamical data structure using a TreeView
control, is the following: firstly we operate
on the data structure (create, new node inser-
tion, node deleting). Secondly, we represent
in the TreeView the data structure current
form (we traverse the data structure and we
add a new item in TreeView).
For exemplify these methods we consider a
ordered binary tree dynamical data structure
described with (10):

type
 point = ^nod;
 nod = record (10)
 number : integer;
 left,right : point
 end;

and with the unit variables (11):

var
 l,z:integer;
 p:point; (11)
 r1:TTreeNode;

Economy Informatics, 2003 66

Fig. 2. Data structure and its representation in TreeView

For the binary tree visualization in TreeView
– Figure 3, we use the following program:

procedure TForm1.Button2Click(Sender:
 TObject);
procedure preorder(var root:point;
 r:TTreeNode);
begin
 if root<>nil then
 begin
 r:=treeview1.Items.AddChildObject(
 r,inttostr(root^.number),root);

 preorder(root^.left,r);
 preorder(root^.right,r);
 end;
end;
begin (12)
 treeview1.Items.Clear;
 { first item in TreeView1}
 r1:=treeview1.Items.AddObject(nil,
 inttostr(p^.number),p);
 preorder(p^.left,r1);
 r1:=treeview1.items[0];
 preorder(p^.right,r1);
end;

Fig. 3 . Ordered binary tree visualization with TreeView

4. The TreeView data structure maste ring
control
Through the TreeView control users can es-
tablish the desired operations on a data struc-
ture. On the other hand, all data structure mo-

difications are reflected by the interface con-
trol. Therefore, we define a new component -
the TreeView data structure mastering co n-
trol – as an interface for managing data struc-
ture - Figure 4.

 Data
 structure

Fig. 4. The TreeView data structure mastering control

Economy Informatics, 2003

67

Programming our own methods for operating
with the data structure through the classical
TreeView component, we can define the
principal properties and methods for the
proposed TreeView. These are based on the
native TreeView control properties and
methods added with the adequate code for
implementing the corresponding data struc-
ture operations.

5. Conclusions
A TreeView data structure mastering control
can be implemented in all RAD environ-
ments that support applications development

based on dynamic linked data structure algo-
rithms. The data access flexibility that allows
rapid movement from one data item to an-
other is visually strengthened by the Tree-
View’s facilities.

References
1. Cretu, V., Structuri de date si tehnici de

programare, vol. I, Editura “Orizonturi
universitare”, Timisoara, 2000

2. Muntean M., Using dynamic object lists
in economic applications design, Bucha-
rest, 2001

3. *** Delphi 6, Development Guide

