
Economy Informatics, 2003

68

Enhancing STL (Standard Template Library) with a file container

Senior lecturer, PhD. Marian DÂRDALA, professor, PhD. Ion SMEUREANU,
assistant lecturer Adriana REVEIU

Economy Informatics Department, A.S.E. Bucharest

Standard Template Library (STL) implements the work with dynamic data structures by defin-
ing a type of class template called data collections or containers. The universality of STL is
ensured because the type of the useful information from the data structure is a generic one
and by defining of some independent functions which implement generally valid algorithms
for data collections. These functions treat the elements of a container unitary, through the
concept of iterator. An iterator is an object defined, connected to a container and used to re-
fer the elements from the container to which it is related. Starting from these elements which
belong to STL, the paper intends to implement the file using the same model in order to be
able later on to relate this to everything that already exists in STL.
Keywords: container, iterator, algorithm, template, file, file organization, file access

efining the file as a container
The file, as a data structure, is a collec-

tion of elements called records or articles.
While the data structures in STL were de-
fined in the internal memory, the file is a
structure belonging to the external memory.
 For the file structure there are already ob-
ject-oriented implementation, for example
the fstream classes from C++ library or
CFile class in MFC. There are two main
elements which are taken into account when
a class implements a file: the type of access
(read, write or both) and the way in which
the input and the output are dealt with, that is
the size of the elements being transferred
(byte, word, string, record) and the way in
which the data are formatted.

In this paper we extend the way in which a
file is implemented by adding another pe r-
spective: the way in which the files are or-
ganized (sequential, direct, indexed) and their
specific type of access. On the other hand we
intend to ensure the universality of the im-
plementation following the class template
model, keeping the compatibility with the
STL resources.
The file is implemented as a class template,
the generic type being type of the record. The
main class (file) implements the file with se-
quential access and includes an iterator class.
In order to implement the other two types of
file organization direct and indexed there
have been derived from the template class
file, two more templates (file_d and file_i) as
shown in figure 1.

file

file_d file_i

Fig. 1. Classes hierarchy for implement the file structure

These derived templates are built as two
adaptive containers which overload the
methods of inserting and consulting accord-
ing to the type of access. The template class
for implementing the indexed-organized file

has two generic types: one for the record type
and the second for the key type.
 Sequential-organized file
Sequential-organized file has been imple-
mented using the class file which includes the

D

Economy Informatics, 2003

69

class iterator. The constructor of the file
class opens the file and the destructor closes

it.

#define WRITE 0
#define READ 1
template <typename REC>
class file
{protected:
 FILE *pf;
 int md,eof;
 REC art, art1;
 void copy() { memcpy(&art1,&art,sizeof(REC)); }
 void rewrite();
public:
 class iterator
 { friend file;
 file *pfis;
 int sf;
 public:
 iterator(int p=0, file *prf=NULL) : pfis(prf),sf(p) { }
 iterator(file *prf):pfis(prf) { }
 REC& operator*() { return pfis->art;}
 void operator++()
 { pfis->rewrite();
 pfis->eof=fread(&pfis->art,sizeof(REC),1,pfis->pf);
 if(pfis->eof) pfis->copy();
 }
 int operator!=(iterator& i) { return pfis->eof!=i.sf; }
 };
 friend iterator;
 file(char *,int=WRITE);
 void push_back(REC);
 iterator begin();
 iterator end() { return iterator(0,this); }
 ~file() { rewrite(); fclose(pf); }
};

The methods of this class are:
• push_back – writes a record in the file;
• begin – returns the iterator referring the
first record;
• end – returns the iterator which refers the
end of the file.
Like in STL in the iterator class, the follow-
ing operators are overloaded:
• ++ to move to the next record;
• != to compare two iterators;
• * to get the record referred by an iterator.
In the iterator class has been defined two
constructors which make the link with the
file for which the iterator has been built. The
constructor:
iterator(int p=0, file *prf=NULL) : pfis(prf),sf(p) { }
plays the role of the implicit constructor and
builds the iterator which refers the end of the
file (sf = 0).

An important issue was being able to use the
same file iterator both for inputs and outputs,
which is to be used both in expressions like:

record = * iterator;
and like:

*iterator = record;
The solution of this problem was to keeping
the current record, referred by the iterator, in
two buffers (art and art1). You can change a
record only in the art variable, and another
operation on file leads to the rewriting of the
current record only if there is a difference be-
tween the two buffers (art and art1). To im-
plement this mechanism there have been de-
fined two functions in the protected section
of the file class:
• copy – to copy the current record, if valid,
from art to art1 ;
• rewrite – which rewrites the current record,
if it has been modified.

Economy Informatics, 2003

70

The updating of the current record is possible
because the method which overloads the
*operator, from the iterator class, returns a
reference to the record (to the art variable)
not the value of record.
Files with direct and indexed access
In order to implement this type of access
there have been defined two templates using
the same principle as for the adaptive type of
containers from STL, that is containers which
have as purpose to redefine some operations
already defined in the parent container.
The file_d class for implementing the direct
organized file:

template <typename REC>
class file_d : public file<REC>
{public:

file_d(char *s,int mod=WRITE) :

file<REC> (s,mod) { }
 iterator find(unsigned);
 void push_at(unsigned, REC);};

defines the methods:
• push_at – to write a record at a spec ified
position in the file (the first position is 0);
• find – to receive the position of the record
that is supposed to be read from the file and
returns an iterator which refers that record or
the iterator which marks the end of the file.
If we wish to modify the record at the i posi-
tion, in case it exists, we will write the fol-
lowing sequence:

*iterator = record;
The file_i class for implementing the indexed
file:

template <typename REC, typename KY>
class file_i : public file<REC>, public index<KY>
{ public:
 file_i(char *s,char *nfi, int mod=WRITE) : file<REC>(s,mod)
 { set_nume_f(nfi);
 if(md==READ) restaurare();
 }
 iterator find(KY);
 void push(KY, REC);
};

defines the following methods:
• push – which inserts a record and re-
ceives as input parameters the value of the
key and the record itself;
• find – which receives the value of the key
and returns an iterator that refers the record
with that key, if it exists, or else the iterator
which refers the end of the file.
In order to manage the indexed access there
has been built a template class two data type -
parameterized (one type for the key - KY and
another for the record itself - REC). In this
paper we do not intend to give a full imple-
mentation of the index-structure itself but
only to present the interface requirements of
such a class. Methods like these are needed:
• of saving/restoring of the index in/from

the file;
• of inserting a key in the index structure

by giving the offset of the record;
• of searching for a key in the index struc-

ture and returning the offset, in case the
key actually exists in the index structure.

The cooperation of the file container with
other elements from the STL
We have said that we implement the file con-
tainer using the STL library model in order to
be able to integrate it with other elements de-
fined in the STL library. We consider a file
with int types records:

file<int> fi("fis_i.dat",READ);
file<int>::iterator it;

- Going through the file by using the iterator
for type all records:

for(it=fi.begin(); it!=fi.end(); it++)
cout<<*it<<endl;

- Updating the files with the same algorithm,
using the function for_each:
 for_each (fi.begin(), fi.end(), patrat);
where, patrat is an independent function:

void patrat(int& k) { k *= k; }
- Displaying the records by using the prede-
fined iterator ostream_iterator and the copy
function:
 ostream_iterator<int> os_it(cout," ");
 copy(fi.begin(), fi.end(), os_it);
- Searching for a record in the file using the
find function:

Economy Informatics, 2003

71

it = find(fi.begin(), fi.end(), val); // unde val este
 //valoarea de cautat in fi sier
if (it != fi.end()) cout<<"\n S-a gasit el "<<*it;
 else cout<<"\n El inexistent!!";

Conclusions
The example presented above illustrates the
flexibility and extensibility of the STL; the
definition of new containers which follow the
implementation principles of the STL ensures
that the code can be reused and by this the
achievement of higher performances when
programming the applications. In this way
there can be obtained new structures which
make use of the STL resources, for example
the implementation of graphs by using list
container.

References
• Deitel, H.M., Deitel, P.J., C++ How to

program, Prentice Hall Inc., New Jersey,
2001.

• Eckel, B., Thinking in C++, Prentice Hall
Inc., New Jersey, 1999.

• Prata, S., Manual de programare în C++ ,
Ed. Teora, Bucuresti, 2001.

• Smeureanu, I., Dârdala, M., Pro-
gramarea orientata obiect în limbajul
C++, Ed. CISON, Bucuresti, 2002.

