
Economy Informatics, 2003

130

Developing Java Web Applications with Jakarta Struts Framework

Liviu Gabriel CRETU
“Al. I. Cuza” University, Faculty of Economics and Business Administration, Iasi

Although one can design a fully functional application with either of the two Java technolo-
gies, the combination of both with Model-View-Controller(MVC) design pattern seems to be
the right (and recommended) choice in order to develop highly flexible, long term maintain-
able web applications. This paper is split in two sections. The first section introduces some
essential aspects of the Servlets and JSP technologies together with some architectural issues
about Java web application design. The second section describes the basic architecture of Ja-
karta Struts framework. A simple web application is built step by step to help readers better
understand this well known Java web application framework.
Key words: Servlet, JSP, Model-View-Controller architecture, Struts framework .

wo J2EE technologies for web appli-
cations. An Introduction

A server in the Web tier processes HTTP re-
quests. In a J2EE application, the Web tier
usually manages the interaction between
Web clients and the application's business
logic. The Web tier typically produces
HTML or XML content, though the Web tier
can generate and serve any content type.
While business logic is often implemented as
enterprise beans, it may also be implemented
entirely within the Web tier.
The Web tier typically performs the follow-
ing functions in a J2EE application: manages
interaction between Web clients and applica-
tion business logic; generates dynamic con-
tent; presents data and collects input; controls
screen flow (which page to display next);
maintains state over the lifetime of a user
session.
§ Java Servlets . A Java Servlet is a Java
class that extends a J2EE-compatible Web
server. Each servlet class produces dynamic
content in response to service requests to one
or more URLs. Such a class must implement
at least two methods doGet() and doPost()
to handle HTTP GET and POST requests
from the browser client.
Servlets offer some important benefits over
earlier dynamic content generation technolo-
gies. Servlets are compiled Java classes, so
they are generally faster than CGI programs
or server-side scripts. Servlets are portable
both at the source -code level between all

Web containers that implement Java Servlet
specification and at the binary level (because
of the portability of Java bytecode). Servlets
also provide a richer set of standard services
than any other widely adopted server exte n-
sion technology. In addition to producing
content, servlets have several features that
support application structure. A developer
can create classes that respond to events in a
servlet's lifecycle by implementing listener
interfaces. A servlet can also be extended by
one or more servlet filters, which are reus-
able classes that wrap calls to a servlet's ser-
vice method, transforming the request or the
response.
§ JavaServer Pages (JSP). Most Web ap-
plications produce primarily dynamic HTML
pages that, when served, change only in data
values and not in basic structure. For exam-
ple, all of the catalog pages in an online store
may have identical structure and differ only
in the items they display. JSP technology ex-
ists for producing such content. A JSP page
is a document containing fixed template text,
plus special markup for executing embedded
logic writen in pure Java language or includ-
ing other resources. The fixed template text
is always served to the requester just as it a p-
pears in the page, like traditional HTML. The
special markup can take one of three forms:
directives, scripting elements, or custom tags
(also known as "custom actions"). Directives
are instructions that control the behavior of
the JSP page compiler and therefore are

T

Economy Informatics, 2003

131

evaluated at page compilation time. Scripting
elements are blocks of Java code embedded
in the JSP page between the delimiters <%
and %>. Custom tags are programmer-defined
markup tags that generate dynamic content
when the page is served. The JavaServer
Pages specification defines a set of standard
tags that are available in all platform imple-
mentations. Custom tags and scripting ele-
ments generate dynamic content that is in-
cluded in a response when a page is being
served.
JSP pages differ from servlets in their pro-
gramming model. A JSP page is primarily a
document that specifies dynamic content,
rather than a program that produces content.
JSP page technology provides a "document-
centric" alternative to "programmatic" serv-
lets for creating dynamic, structured data. Al-
though a JSP page looks to its author like a
document, most J2EE implementations trans-
late a JSP page into a servlet class when it is
deployed.
§ Two design paterns. When Java servlets
were first invented, many programmers
quickly realized that they were a good thing.
They were faster and more powerful that
standard CGI, portable, and infinitely exte n-

sible. But writing HTML to send to the
browser in endless println() statements
was a very problematic and error predisposed
task. The answer to that was JavaServer
Pages, which turned servlet writing inside-
out. Now developers could easily mix HTML
with Java code, and have all the advantages
of servlets. As a consequence, Java web ap-
plications quickly became "JSP-centric".
This in-and-of itself was not a bad thing, but
it did little to resolve flow control issues and
other problems of web applications (jakarta.
apache.org/struts/).
Many developers realized that JavaServer
Pages and servlets could be used together to
deploy web applications. The servlets could
help with the control-flow, and the JSPs
could focus on writing HTML. As a fact, us-
ing JSPs and servlets together became known
as Model 2 (where using JSPs alone was
Model 1).
A J2EE application's Web tier serves HTTP
requests. At the highest level, the Web tier
does four basic things in a specific order: in-
terprets client requests, dispatches those re-
quests to business logic, selects the next view
for display, and ge nerates and delivers the
next view.

Fig . 1 . The Web-T ier Service Cycle (source: Allamaraju, S. (2001))

The Web-tier controller receives each incom-
ing HTTP request and invokes the requested
business logic operation in the application
model. Based on the results of the operation
and state of the model, the controller then se-
lects the next view to display. Finally, the
controller generates the selected view and
transmits it to the client for presentation.
The two architectural designs that we spec i-
fied earlier (Model 1 and Model 2) first ap-

peared in the early drafts of the JSP specifi-
cations (Budi Kurniawan(2001)).
In Model 1 architecture, the application is
page-centric. The client browser navigates
through a series of JSP pages in which any
JSP page can employ a JavaBean that per-
forms business operations. However, the
highlight of this architecture is that each JSP
page either processes its own input or proc-
esses some session parameters and decides
which Web resource to display next.

Economy Informatics, 2003

132

JavaBean

JSP
Next JSP or
other Web
Resource

Fig. 2. Model 1: JSP page processes the business logic and acts like a controller

This architectural design is suitable only for
small projects, but when we talk about real
applications’ design it is thought rather as a
bad practice because it implies the following
major disadvantages: hard to develop by an
heterogeneous team where every member has
its own, specialized, skills; not flexible; hard
to maintain.
Model-View-Controller ("MVC") is the
Sun’s recommended architectural design pat-
tern for interactive applications (java.sun.
com/j2ee/). Following MVC approach, we
can organize an interactive application into
three separate modules: one for the applica-
tion model with its data representation and
business logic, the second for views that pro-
vide data presentation and user input, and the
third for a controller to dispatch requests and
control flow.
The Model 2 architecture is basically a MVC
architecture that separates business logic,

content generation and content presentation.
The core of this model consists in the pre s-
ence of a controller servlet between the client
browser and the JSP pages or other servlets
that generate and present the content. The
controller servlet may perform some business
logic or delegate this task to a JavaBean ob-
ject and selects the corresponding presenta-
tion based on the request URL, input parame-
ters, and application state. In this model,
presentation parts (JSP pages) are isolated
from each other.
Model 2 applications are more flexible and
easier to maintain, and to extend, because
views do not reference each other directly.
The Model 2 controller servlet provides a
single point of control for security and lo g-
ging, and often encapsulates incoming data
into a form usable by the back-end MVC
model.

JavaBean
(Business Model) JavaBean

(Business Model)

 Controller
Servlet

JavaBean
(Business Model)

Extract Data Update Extract Data

request

response

Database

Next JSP

Fig . 3 . Model 2: JSP pages provide only the presentation.

Business logic and request dispatc hing are separated.

A simple web application with Jakarta
Struts Framework
Most Web-tier application frameworks use
some variation of the MVC design pattern.
The Apache Jakarta Project (jakarta.apache.
org/struts) has developed one that has been
well adopted by Java community developers.

Struts is comprised of a controller servlet,
beans and other Java classes, configuration
files, and tag libraries. This means that when
you have downloaded Struts you have avail-
able: (1) a controller for your application (the
Struts servlet acts as a common controller for
the whole application); (2) a collection of tag

Economy Informatics, 2003

133

libraries that will be used in application’s
JSP-pages.
To glue these things together Struts uses a set
of configuration files.
The simplest way to install Struts framework
is to download the archive from (jakarta.
apache.org/struts), unpack the “struts-
blank.war” which contains a blank apllic a-

tion and copy the unpacked content into the
applications folder of the web server (if
Tomcat is that server, the applications folder
is “/webapps”). Then rename the “/struts-
blank” folder to, let’s say /WebTest. This
folder contains a standard Java web applica-
tion directory structure and the files needed
to develop a Struts application (figure 4).

Fig . 4 . Struts’ directory structure

Files in blank-application have the following
meanings: (1) the “*.tld” files are custom tag
libraries that we use instead of standard
HTML tags in our JSP pages; (2) the “struts-
config.xml” is the core of the Struts applic a-
tion, because it maps user actions (such as
submitting a form) to Java beans that perform
the actual action process; (3) ”Application-
Resources.properties” file contains pears of
named parameters and textual values that we
use in JSP Pages for writing a string that may
change form one situation to another (very
useful for multiple -language applications and
for error messages) ; (4) the “struts.jar” con-
tains Java class libraries of the Struts frame-
work.
When you develop a Struts web application
you basically follow six steps over and over
until the application is finished: (1) design a

JSP page with Struts’ custom tags instead of
standard HTML tags; (2) code a Java bean
that extends ActionForm and defines proper-
ties that maps input elements of the HTML
form defined earlier; (3) optionally imple-
ment the validate() method of the Action-
Form class to validate user input (4) code a
Java class that extends Action class and pro-
vide an implementation for the perform()
method. (5) build the response documents for
that request (6) glue all pieces created in the
above steps by writing an <action> tag in
the “struts -config.xml” file.
Figure 5 pictures a simple Struts Application
that validates login information pr ovided by
users in a HTML form defined in Login.jsp.

Economy Informatics, 2003

134

Struts
Controller Servlet

Welcome.jsp

Login.jsp

ErrorPage.jsp
<action>
<action>
<action>
…

Struts-Config.xml

LoginForm.class

LoginAction.class
(login check)

Success

Faillure

Web Request

Fig . 5 . A simple login application with Struts framework

To build this application we will follow the
six phases discussed above. Additional in-
formation, necessary to fully understand the
framework, will be provided as we step
through different stages of application crea-
tion.
The first step consists of building the
Login.jsp page (remember that in Java every-
thing is case-sensitive, even the names of
files that contains classes). The source code
can be found in listing 1. As you can see, the

standard HTML tags have been replaced with
Struts tags (<html:text property=”userid”> in-
stead of <input type=”text” name=”userid”>). In
order for the ActionForm bean to work, we
must use Struts' own tags for creating the
HTML form and the GUI controls in it. We
will not go into details about these tags -
they're clearly modeled after the "real"
HTML-tags and can be found, in details, in
Struts documentation.

Listing 1. The Login.jsp page
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ page contentType="text/html; charset=ISO-8859-1" %>

<html>
<head><title>Login form</title></head>
<body>
<html:errors />
<html:form action="/login">
<table border="0" width="200">
<tr>
 <td>User Name:</td>
 <td><html:text property="userid" maxlength="13"/></td>
</tr>
<tr>
 <td>Password:</td>
 <td><html:password property="password" maxlength="13"/></td>
</tr>
</table>

<html:submit value="Login"/>
</html:form>

</body>
</html>

The <html:form> tag defines the attribute
action which is mandatory. This attrib-
ute’s value specifies the action to be proc-
essed by Struts’ Controller Servlet. The value
must map to a value of the path attribute
specified for an <action> tag in “struts-
config.xml” (see listing 5). In the same fash-

ion, the corresponding tags for standard
HTML <input> (<html:text>,
<html:radio>, <html:select> and so on)
define a property attribute that is also
mandatory. This attribute’s value must map a
property (it’s name) defined in the Java bean
(subclass of ActionForm class) that will be

Economy Informatics, 2003

135

used both to extract the HTML form field’s
value and to print the input e lement’s value
to the client.
We can find the corresponding JavaBean’s
source code (step 2) in listing 2. The bean
provides properties for the Login.jsp form
(listing 1). The validate() method ver ifies
if the userid and password are not null or
empty. This method must return an Action-
Errors object that is, in fact, a collection. If
the object returned is null or empty, the Ac-

tion class is called. However, if the Ac-
tionErrors collection contains some ele-
ments (objects ActionError) the original
page (in this case Login.jsp) is sent back to
the client together with the error messages.
Error messages are taken from “Application-
Resource.properties” file, by mapping the
character string provided as an argument to
ActionError constructor with parameters
defined in that file. Listing 3 pictures the
contents of this file for our example.

Listing 2 The ActionForm class for Login.jsp form
package databeans;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionMapping;
import javax.servlet.http.HttpServletRequest;

public class LoginExistingUserForm extends ActionForm
{
 String userid;
 String password;
 public String getUserid() { return userid; }

 public void setUserid(String newUserid) { userid = newUserid; }

 public String getPassword() { return password; }

 public void setPassword(String newPassword) { password = newPassword;}

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request){
 ActionErrors errors=new ActionErrors();
 if (this.userid==null || this.userid.equals(""))
 {errors.add("user",new ActionError("error.userid.required"));
 }
 if (this.password==null || this.password.equals(""))
 {errors.add("pass",new ActionError("error.password.required"));
 }
 return errors;
 }
}

Listing 3. Defining application messages in ApplicationResources.properties file
errors.header=<h3>Erori completare formular</h3>
errors.footer=<hr>
error.userid.required=You Must provide an User Name!!!
error.password.required=You Must provide a Password!!!

The Struts framework generally assumes that
you have created an ActionForm bean (that
is, a Java class implementing the Action-
Form interface) for each input form required
in your application. If you define such beans
in your ActionMapping configuration file
(see listing 5), the Struts controller servlet
will automatically perform the following se r-
vices for you, before invoking the appropr i-
ate Action method:
• Check in the user's session for an in-
stance of a bean of the appropriate class, un-
der the appropriate key.

• If there is no such session scope bean
available, a new one is automatically created
and added to the user's session.
• For every request parameter (all input
elements of a HTML form end up as parame-
ters of the HttpServletRequest object)
whose name corresponds to the name of a
property in the bean, the corresponding setter
method will be called. This operates in a
manner similar to the sta ndard JSP action
<jsp:setProperty> when you use the aster-
isk wildcard to select all properties.

Economy Informatics, 2003

136

• The updated instance of the ActionForm
bean will be passed to the Action Class
perform() method when it is called, mak-
ing these values immediately available.
When we code our ActionForm beans, we
have to keep the following principles in
mind:
• The ActionForm interface itself requires
no specific methods to be implemented. It is
used to identify the role these particular
beans play in the overall architecture. Typi-
cally, an ActionForm bean will have only
property getter and property setter methods,
with no business logic.
• Generally, there will be very little input
validation logic in an ActionForm bean. The
primary reason such beans exist is to save the
most recent values entered by the user for the
associated form -- even if errors are detected
-- so that the same page can be reproduced,
along with a set of error messages, so the
user need only correct the fields that are
wrong. Validation of user input should be
performed within Action classes (if it is
simple), or appropr iate business logic beans.
• Define a property (with associated
getXxx() and setXxx() methods) for each
field that is present in the form. The field
name and property name must match accord-
ing to the usual JavaBeans conve ntions. For
example, an input field named userid will
cause the getUserid() (for printing input
element data) and setUserid()(to populate
the bean with data typed by user in the input
elements of the same form) methods to be
called.
We must be aware that a form bean does not
necessarily correspond to a single JSP page
in the user interface. It is common in many
applications to have a "form" (from the user's
perspective) that extends over multiple
pages. Think, for example, of the wizard
style user interface that is commonly used

when installing new applications. Struts en-
courages you to define a single ActionForm
bean that contains properties for all of the
fields, no matter which page the field is actu-
ally displayed on. Likewise, the various
pages of the same form should all be submit-
ted to the same Action class. If we follow
these suggestions, the page designers can re-
arrange the fields among the various pages,
with no changes required to the processing
logic in most cases.
Step 4 states that we should implement an
Action class’ perform() method. This
method will be called after the user submits
the form and the controller servlet populates
the corresponding ActionForm’s properties.
Listing 4 provides the source code for our
Action class. As you can see, the perform ()
method does a very simple task: verifies if
the user name and password typed by the
user match some character strings (of course
in a real-world application we will query a
database or an XML file). The user name and
password data are extracted from the form
bean defined earlier, through the form ar-
gument that servlet-controller sends to per-
form() method. Note that we have to down-
cast this reference to the original type (Log-
inExistingUserForm). The perform ()
method must return an ActionForward ob-
ject which will tell to the controller servlet
what view (JSP page or other resource) to
display next. An object of type ActionFor-
ward will be obtained if findFro-
ward(String pathValue) method is in-
voked for the mapping object (also a refe r-
ence obtained as a method argument). The
argument pathValue must map to a value of
path attribute of the corresponding <ac-
tion> tag in “struts-config.xml” (see listing
5).

Listing 4. The ActionClass for Login.jsp form
package formactions;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import java.io.IOException;

Economy Informatics, 2003

137

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import databeans.LoginExistingUserForm;
import java.sql.*;
public class LoginExistingUserAction extends Action
{

 public ActionForward perform(ActionMapping mapping, ActionForm form, HttpServletRequest re-
quest, HttpServletResponse response) throws IOException, ServletException
 {
 LoginExistingUserForm loginData=(LoginExistingUserForm)form;
 if (loginData.getUserid().equals("John")&&loginData.getPassword().equals("Pass"))
 return mapping.findForward("successLogin");
 else
 return mapping.findForward("failureLogin");
 }
}

Now, all we have left to do is to make these
three pieces of application co-operate. This
will be done by adding some specific tags to
“struts-config.xml” file (listing 5). This file
needs special attention because it is the very
engine of the whole application. The process
goes as it follows:
• If you look carefully at Login .jsp page
definition (listing 1) you can see that the ac-
tion of the form points to “/login” path . In
struts-config.xml we must define an <ac-
tion> tag with attribute path=”/login”.
All <action> tags are nested into a single
<action-mappings> tag.
• The value of the name attribute of <ac-
tion> tag must be the name of the bean
specified in <form-bean> tag that will pro-

vide/undertake input data from the HTML
form
• The input attribute value must be the
JSP page that will provide input form data
• If scope=”session” that bean will be in-
cluded in the HttpSession object for the
user’s session, so it will be possible to extract
it later from the user request
• The name attribute of the <forward> tag
must have the same character string value as
that specified in Action class: see for exa m-
ple return mapping.findForward("suc-
cessLogin") in Action class.
• The path attribute of the same <for-
ward> tag must provide the actual path to
the document to be sent back to the client.

Listing 5. Putting it all together in struts-config.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE struts-config PUBLIC "-//Apache Software Foundation//DTD Struts Configuration
1.1//EN" "http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">
<struts-config>
<!-- =====================beans for HTML form data================================ -->
 <form-beans>
 <form-bean name="loginBean" type="databeans.LoginExistingUserForm"/>
 </form-beans>
<!-- =====================Action mappings ================================ -->
 <action-mappings>
 <action path="/login" type="formactions.LoginExistingUserAction" name="loginBean"
 input="/Login.jsp" scope="session">
 <forward name="successLogin" path="/Welcome.jsp" redirect="true" />
 <forward name="failureLogin" path="/Diverse.jsp" redirect="true" />
 </action>
 </action-mappings>

 <message-resources parameter="ApplicationResources" />
</struts-config>

Note. Following the Servlet 2.2 API direc-
tory structure restriction, all Java classes
must be located in the WEB-INF/classes
folder. Also remember that everything is
case-sensitive.

The source code for Welcome.jsp ca be
found in listing 6. You can see that we use
the same bean (LoginExistingUserFOrm)
to extract the user name for printing to the re-
sponse document. The bean name
(id=”loginBean”) must match exactly the

Economy Informatics, 2003

138

name attribute of the <form-bean> tag in
struts-config.xml in order to get the same ob-

ject from the HttpSession object of the cli-
ent request.

Listing 6. Source code for Welcome.jsp page
<%@page contentType="text/html"%>
<jsp:useBean id="loginBean" class="databeans.LoginExistingUserForm" scope="session"/>
<html>
<head><title>JSP Page</title></head>
<body>
<h3> Welcome <%=loginBean.getUserid()%>

 You have succesfuly loged in
</h3>
</body>
</html>

Figure 6 pictures the functionality of this ap-
plication while figure 7 demonstrates input

data validation with validate() method
of the form’s associated bean.

Fig . 6 . Sample login application in action

Fig. 7. Validating user input with validate() method of ActionForm bean

Conclusions
The Model-View-Controller design pattern
provides a host of design benefits. MVC
separates design concerns (data persistence
and behavior, presentation, and control), de-
creasing code duplication, centralizing con-
trol, and making the application more easily
modifiable. MVC also helps developers with
different skill sets to focus on their core skills
and collaborate through clearly defined inter-
faces. For example, a J2EE application pro-

ject may include developers of custom tags,
views, application logic, database functiona l-
ity, and networking. An MVC design can
centralize control of such application facili-
ties as security, logging, and screen flow.
New data sources are easy to add to an MVC
application by creating code that adapts the
new data source to the view API. Similarly,
new client types are easy to add by adapting
the new client type to operate as an MVC
view. MVC clearly defines the responsibili-

Economy Informatics, 2003

139

ties of participating classes, making bugs ea s-
ier to track down and eliminate.
Apache’s Jakarta Struts project clearly im-
plements the MVC design pattern. The
framework is stable, quite simple to use, and
helps heterogeneous teams to work together
in a very pr oductive environment.

References
Allamaraju, S. (2001). Proffesional Java
Server Programing J2 EE 1.3 Edition , Wrox
Press Ltd.
Budi Kurniawan.(2001). Java for the Web
with Servlets, JSP, and EJB , New Riders, In-
dianapolis;
*** http://java.sun.com/j2ee/ . Java Servlet
Specification v2.4, Proposed Final Draft
*** http://java.sun.com/products/jsp/
*** http://jakarta.apache.org/struts/

