
Economy Informatics, 2003

88

Queuing Systems and Parallel Processing

Pre-Assistant Lecturer Felician ALECU
Economy Informatics Department, A.S.E. Bucharest

According to the dictionary, a queue is a file or line of persons. As a verb, “to queue” means
to form a line while waiting for something. The etymology is from the Latin coda, which
means tail. As defined by Saaty, a queue, or a waiting line, involves arriving items that wait to
be served at the facility which provides the service they seek. Queuing theory is very useful in
telecommunications, traffic control, determining the sequence of computer operations, pre-
dicting computer performance, health services, airport traffic, airline ticket sales, mining in-
dustry, manufacturing systems. In our days, it is very common to have systems where users
remain stationary at separated locations while the servers visit them and provide the required
service. Such a system is called spatially distributed queue. The execution queue of a parallel
system is managed by the scheduler who allocates tasks to available processors as well as
implements the queue order and priorities.
Keywords: Queuing system and theory, queuing network, spatially distributed queue, schedul-
ing, parallel systems efficiency.

 queuing system is a generic model that
compr ises three elements: a user source,

a queue and a service facility that contains
one or more (possibly an infinite number of)
identical servers in parallel. Each user of the
queuing system passes through the queue
where he may remain for a period of time
(positive, possibly zero) and than is proc-
essed by a single server because of the paral-
lel arrangement of the servers. Once a user

has left the server, after obtaining the service,
the user is considered to have left the que u-
ing system as well. [Bol90]
A queuing system is formed from three ge-
neric elements (figure 1):
1. The arrival process of users in the sys-
tem;
2. The order in which users obtain access to
the service facility, once they join the queue;
3. The service process.

Users

Arrival at
the system

Queue Service facility

Service
Departure from

the system

Server 1

Server n

...

Fig. 1. Queuing system

A queuing network is a set of interconnected
queuing systems.[Gro03] The user sources
for some of the queuing systems in the net-
work may be other queuing systems in the
same network (figure 2).
It is obvious that there are countless varia-
tions of queuing systems and networks. This

is why a code has been used to describe the
best-understood queuing systems. The code
has the form A/B/m, where A and B are letter
symbols that indicate the probability distrib u-
tion of arrival and se rvice times and m is the
number of identical parallel servers from the
queuing system (),1[∞∈m).

A

Economy Informatics, 2003

89

Queuing
system 1

Queuing
system 2

Queuing
system 3

Queuing
system 4

Queuing
system 5

Decision point Join point

Queuing system
entry point

Queuing system exit
point

Fig. 2. Queuing network

Table 1 shows the standard code letters used
to express the probability distributions in
queuing theory. Table 2 contains the abbre-
viations of the most common queue disc i-
plines.

Table 1 – Probability distributions

SYMBOL DESCRIPTION
M Poisson distribution
D Deterministic distribution
Ek Erlang distribution
Hk Hyper exponential distribution
G General distribution

Table 2 – Queue disciplines

ABBREVIATION DESCRIPTION
FIFO First in, first out
FCFS First come, first served
LIFO Last in, last out
LCFS Last come, first served
SIRO Service in random order

The system capacity, another important pa-
rameter in the description of a queuing sys-
tem, indicates the maximum number of users
that can be in the service facility and in the
queue at any time. On the other hand, the
queue capacity indicates the maximum num-
ber of users that can be in the queue alone.
A stationary located server (like an ATM)
where the users queue up to be served repre-
sents the classical perspective of a queuing
system. In our days, it is very common to

have systems where users remain stationary
at separated locations while the servers visit
them and provide the required service. Such
a system is called spatially distributed queue.
An example of a spatially distributed queuing
system is the ambulance service.
To obtain a faster execution time, a parallel
program is usually divided into independent
tasks that will be executed concurrently. Two
tasks are independent each other if the same
result is obtained if the tasks are executed se-
quentially in any order or in parallel.
Any computer, sequential or parallel, imple-
ments waiting queues to properly ma nage the
access to the system shared resources like
processor, memory, peripheral devices and so
on. Usually, there is a queuing system for
each shared resource from the system.
[Chi95] The resource represents the server
and the tasks that try to access the resource
concurrently form the users of the waiting
system. If the shared resource is the proces-
sor, the waiting queue is known as execution
queue. Execution queues make the transition
from the sequential programming to the par-
allel one.
Basically, an execution queue is a list con-
taining ready to be executed processes. If this
list is located in the system shared memory,
the access to the list has to be done in a criti-
cal section in order to avoid the possibility of
an execution of a process on two different

Economy Informatics, 2003

90

processors in the same time. The mutual ex-
clusion is used to access the shared resources
and it is implemented using the classical
mechanisms from uni-processor systems like
barriers, semaphores, monitors, etc. If a
processor enters the critical section, it has
exclusive access to the list of the ready to be
executed processes. Based on the queue dis-
cipline and priorities, the processor will pick
up a process from the list. Than, it will leave
the critical section and will execute the se-
lected process.
A parallel computer is a set of processors that
are able to work cooperatively to solve a
computational problem. Based on this defini-
tion, a parallel computer could be a super-
computer with hundreds or thousands of
processors or could be a network of worksta-
tions.
According to Tanenbaum, a distributed sys-
tem is a set of independent and intercon-
nected computers that appear to the user as a
single one. The computers can communicate
and collaborate to each other using software
and hardware interconnecting components.
The computers have to be independent and
the software has to hide individual computers
to the users. Multiprocessors (MIMD com-
puters using shared memory architecture),

multi-computers connected through static or
dynamic interconnection networks (MIMD
computers using message passing architec-
ture) and workstations connected through lo-
cal area network are examples of such dis-
tributed systems.
A distributed operating system is an operat-
ing system used on a distributed system. It is
the extension for multiprocessor architectures
of multitasking and multiprogramming ope r-
ating systems. A distributed operating system
is a special kind of software used on a dis-
tributed system. It manages the system-
shared resource s used by multiple processes,
the process scheduling activity (how proc-
esses are allocated on available processors),
the communication and synchronization be-
tween running processes and so on.
Multiprocessors are known as tightly coupled
systems and multi-computers as loosely cou-
pled systems. The software for parallel com-
puters could be also tightly coupled or
loosely coupled. Combining loosely and
tightly coupled hardware and software we
can identify four distributed operating sys-
tems categories but the loosely coupled sof t-
ware and tightly coupled hardware case is not
met in practice (table 3).

Table 3 – Types of distributed operating systems

Software Type
 loosely coupled tightly coupled

loosely coupled Network operating
systems

Real distributed
operating systems

Hardware Type
tightly coupled - Multiprocessing

operating systems

A multiprocessing operating system is a mul-
titasking operating system running on a mul-
tiple processor system. There is a single list
of ready to run processes. When a new proc-
ess is ready to run it is added to the list lo-
cated in the shared memory area. Any proc-
ess can access the list. When a processor is
free, it extracts a process from the list and
executes it. The operating system has to im-
plement mutual exclusion mechanisms (se-
maphores, monitors, locks or events using

various protocols) in order to protect the con-
current accesses to the ready to run processes
list. Using these mechanisms, a processor has
exclusive access to the processes list and it
can extract the first list entry. Then, the list is
released and the process is executed. Because
the running time of a parallel pr ogram on
such a system is finite, we can presume that
the program will be divided into a finite
number of processes. The queuing model as-
sociated to a parallel system running a multi-

Economy Informatics, 2003

91

processing operating system will be an inf i-
nite capacity one. The service facility is
formed from m servers running in parallel,
where m is the number of the processors
from the system.
On the opposite side there are network ope r-
ating systems and real distributed operating
systems. A copy of the operating system is
running in every processing node so the dis-
tributed system has as many waiting queues
as the number of the processors. In every
processing node there is a copy of the opera t-
ing system that manages the processor execu-
tion queue. Assuming that the execution time
of a parallel program is finite, we can pre-
sume that the program will be divided into a
finite number of processes too. This is why
we can associate to each processing node a
queuing model with a single server and arri-
vals from a finite population. The queuing
systems at the nodes level are interconnected
together into a queuing network because the
processors have to communicate and syn-
chronize each other. The processes may have
specific dependencies that may prevent them
from executing in parallel in all cases. For
example, a process may require the output
produced by certain task and it cannot be
executed until that prerequisite task has com-
pleted executing.
The waiting systems presented above could
become queuing models with arrivals from
an infinite population if the pa rallel program
needs a very long time to complete its exec u-
tion and the number of the generated proc-
esses will increase substantially.
The effective type of the queuing systems
used to describe the execution of a parallel
program depends by the probability distribu-
tion of the service facility servers. The most
common model used is the M/M/m one be-
cause usually the service distribution is a
Poisson one. An M/G/m model has to be im-
plemented if processes can use unlimited
time to complete their execution. For a data-

parallel program, the same instructions will
be executed on different data sets and the fi-
nal result will be obtained by combining the
partial ones. This is why we can assume that
the services are distributed exponentially
negative so an M/M/m model could be suc-
cessfully used.
The queuing theory is a very useful tool to
predict the performances of computer sys-
tems in general and of the parallel ones in
particular. The averages quantities of interest
(expected waiting time in the queue and in
the system, expected total number of users in
the queue and in the system) offer us a clear
picture about the system performances and
the ways to improve them. The queuing the-
ory will help us to find out how to tune the
system parameters in order to increase the
system efficiency.
Usually, the system scheduler manages the
queuing system. Its main responsibility is to
scheduled tasks to the system processors but
it also implements the queue discipline and
the priority classes.[Dod02]
The total turnaround time of a process is
formed by the queue wait time and the
elapsed execution time. The queuing theory
teaches us that it is important to not only re-
duce the job elapsed time by using faster
processors but also the queue time through
effective scheduling and management re-
sources.

References
[Bol90] G. Boldur-Latescu, I. Suciu, E. Ti-
ganescu, Operational Research with Applica-
tions in Economy, A.S.E., 1990
[Chi95] I. Chiorean, Parallel Computing, Ed.
Albastra, Cluj-Napoca, 1995
[Dod02] Gh. Dodescu, B. Oancea, M.
Raceanu, Parallel Processing, Ed. Economi-
ca, Bucharest, 2002
[Gro03] D. Gross, C. M. Harris, Fundamen-
tals of Queuing Theory, Wiley, New York,
2003

