
Economy Informatics, 2003 

 
72 

A Processing Algorithm for an Intelligent Production System 
 

Associated Professor, Ph.D. Vasile MAZILESCU  
Accounting and Economic Informatics Department 

Faculty of Economic and Administrative Sciences University „Dunarea de Jos” of Galati 
 
 

The aim of this paper is to present the aspects of a control fuzzy knowledge based system 
(CFKBS) for a flexible manufacturing system that must be predictable. Typical examples in-
clude control software for monitoring, safety-critical and risky economic and industrial appli-
cations. We give an algorithm for processing a knowledge control model. 
Keywords: predictability, real-time expert systems, inference engine. 

 
Introduction 
In this paper we concentrate on the 

applicability of a processing algorithm for a 
specific knowledge model, with respect to 
the timing requirements. The use of temporal 
aspects refers to the design of those tools to 
integrate time in process control applications. 
These aspects are formally found on the in -
ference engine algorithms, able to make full 
use of the specific knowledge to the process 
control [1, 5]. The symbolic aggregation 
metaoperator can be instantiated into dif-
ferent classes of specific operators, depen-
ding on the goal pursued by the control 
model. We assume that the process operates 
like finite nondeterministic state machine, 
while the expert system will operate like a 
finite deterministic state machine. The 
closed-loop control expert system can be 
modeled like a nondeterministic state 
machine, whose outputs are the process 
outputs. A major obstacle to the widespread 
use of (possibilistic) expert systems in real-
time domains is the non-predictability of rule 
execution time. A widely used algorithm for 
real-time production systems is the Rete 
algorithm [2]. To achieve a fast reasoning the 
number of fuzzy set operations must be 
reduced. For this, we use a fuzzy compiled 
structure of knowledge, like Rete, because it 
is required for real-time responses and a 
fuzzy inference engine. The engine 
represents a method of fast fuzzy logic 
inference [3, 4]. The fuzzy expert system 
CFKBS predictability has been specified in 
section 2. To illustrate the theoretical results 
we provide in section 3 an example of a 

fuzzy model based on metalevel knowledge 
for flexible production system in a specific 
structural definition [6]. Section 4 present 
concluding remarks to develop AI reasoning 
systems that utilize learning and planning 
capabilities. 
 
2. The discrete models of CFKBS 

In AI, the problem domain must be de-
fined as a collection of problems that the ex-
pert system desires to solve.  In conve ntional 
control, the plant is a dynamical system, de-
scribed with linear or non-linear differential/ 
difference equations. An AI expert system 
consists of the planner or the inference en-
gine, the problem domain, the exogenous in-
puts, and their interconnections. The outputs 
of the expert system are the inputs (control 
actions) to the problem domain. There are 
unmeasured exogenous inputs to the problem 
domain (disturbances) that represent specific 
uncertainty. The measured exogenous input 
to the expert system is the goal. An expert 
system can be modeled using predicate or 
temporal logic or other symbolic techniques 
such as finite state machine. AI feedback ex-
pert systems are analogous to conventional 
feedback control systems that do not use state 
estimation (they do not use situation asses s-
ment). 
Our CFKBS fuzzy real-time expert systems 
must represent imprecise, time and temporal 
data, encode temporal knowledge and man-
age temporal fuzzy reasoning [6]. Following 
a conventiona l planning-theoretic approach, 
we can introduce a mathematical model for 
the plant P and the possibilistic expert control 
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system (PECS), which consists of the poss i-
bilistic expert system (PES) and the plant. 
The PES must be designed so that it can co-
ordinate the use of the plant outputs and re f-
erence (user) inputs, to decide what plant 
command inputs (or hypothesis/ conclusions) 
to generate so that the closed-loop specifica-
tions are met. Although the PES (viewed as 
an expert system) are frequently being use d 
to perform complex control functions, most 
often it is the case that no formal analysis of 
the dynamics is conducted because mathe-
matical analysis of such systems is often con-
sidered to be beyond the scope of conve n-
tional control theory.  
It is assumed that the economic process can 
be represented with the following model: 
P=(X, E, fe, δ e, g, Ev), that can represent ce r-
tain class of discrete event  systems, where X 
is the set of plant states denoted by x, E is the 
set of all events, fe are the state transition 
map, fe: X→X, ek∈ P(E), k∈T, δ e are the 
output maps, g is the enable function, g:X→  
P(E), and Ev is the set of all valid event tra-
jectories (that are physically possible). Note 
that E is the union of the command-input 
events (E u), the disturbance input events (E d) 
and the output events (E o) of the plant. When 
discussing the states and events at time k, 
k∈T or k is a fuzzy instant or a fuzzy time in-
terval, xk∈X is the plant state, euk∈Eu is a 
command input event of the plant, edk∈Ed is 
a disturbance input event of the plant, eok∈Eo 
is an output event of the plant, that is equal to 
input event epk∈Ep for PES. Each ek ⊂g(xk) 
is an event that is enabled at time k, and it 
represents a set of command and disturbance 
input events of the plant. If an event ek∈E 
occurs at time k and the current state of plant 
is xk, then the next state is xk+1 = fek(xk) and 
the output is eok= epk= δ ek(xk). Any sequence 
{xk} such that for all k, xk+1  = fek(xk), where 
ek ⊂  g(xk) is called a state trajectory. The 
PES  has two inputs: the reference input 
events erk∈ PES

rE  (user inputs) and the output 

events of the plant eok=epk, erk∈ PES
pE . Based 

on its fuzzy state and these inputs, the PES 

generates enable command input events to 
the plant PES

0k
e ∈ PES

0E .  
A fact in a fuzzy database may be a property 
ω of objects; an object x0 has, or has not the 
property ω, or in other words ω(x0) is true to 
degree α, α∈[0,1].  
A(x)∈FJ itself is not sufficient to characterize 
the vagueness of ω. A couple (A,α), where A 
∈ FJ and α ∈ [0,1] is a truth degree of A is 
called an uncertain clause. The vagueness of 
ω is formally characterized by a set of uncer-
tain clauses A so that A={(Ax(t); α t) | t∈J, t= 
term of the language J}; Ax(t) is a formula 
obtained from A by replacing all free occur-
rences of x by the term t. An inference rule is 
a scheme ([A1; α1],...,[A n;αn])/[B;b], where 
B=rsyn(A1,...,An) is a formula syntactically 
derived from Ai, i=1,n and b= rsem(α??????αn) is its 
resulting evaluation. In approximate reason-
ing used in process management and control, 
the basic situations are defined by specifying 
a linguistic description or model based on 
fuzzy rules R 1,...,Rk. Each of Ri  is interpreted 
by considered as a set of special axioms, be-
ing the basis of approximate reasoning at the 
given moment based on some inference rules 
[3]. 
 
3. A case study 
A Flexible Production System (FPS) can be 
represented by a G= (M,A) graph, where M= 
{1,…,N} represents the set of the identical 
subsystems (agents) from its structure and 
A⊂ΜxΜ. We consider that G is strongly 
connected, meaning that for (∀) i∈Μ there is 
a path from i to (∀) j ∈Μ  and additionally, if 
(i,j) ∈Α, i ≠ j. Each subsystem has a quantity 
of tasks that can be processed by the i agent 
or by any other agent. We consider the affer-
ent quantity of i, marked by xi ≥0 for xi∈Ν∗ 
or µxi∈ R∗

+ (for the fuzzy case), the quantity 
that can be partially transferred to the j sub-
system. The afferent CFKBS to this problem 
domain must transfer the quantities from i to 
j if there is (i,j) ∈Α. We mark with ec

k,
ij the 

command fact by which the quantity ck from 
i to j is transferred. We consider a FPS struc-
ture with N=6 connected such: {(1,2), (2,1), 
(1,3), (3,4), (4,3), (4,2), (3,5), (5,6), (6,5), 



Economy Informatics, 2003 

 
74 

(6,4)} ⊂ {1,...,6}x {1,...,6}. The problem that 
CFKBS  must to solve is for a given FPS 
structure with initial given values xi ≥ 0 to 
establish an equilibrated distribution of the 
each agent load, i∈Μ. The model that is to be 
compiled Mk of the FPS is inserted within 
the knowledge base of the CFKBS and it 
implies the graph structure (M, A),  Σ i=1,6 xi/6 
=c,  c? N*

+ or c? R*
+ . 

 
For the synthesis of the fuzzy knowledge 
model afferent to this FPS it was necessary 
to consider the loads as T-fuzzy numbers, 
linguistically under the form of “about the 
value” or “approximate“ as well as the intro-
duction of some intermediary variables into 
the model structure of the type: the degree of 
global equilibration ge (at the whole FPS 
level) with satisfactory fuzzy values and non -
satisfactory ones for the partial equilibration 
degree gepi , i = 1,…5 (for subsystem groups) 
corresponding to the certain unsolved situa-
tions  within the crisp model as well the 
fuzzy variables d56, d42, d13, d21, d43, d35,    
which can get T- fuzzy numbers small, big , 
and zero. The actual partial equilibration de-
grees applied, are characterized by uncertain 
linguistic values such good and non -
satisfactory (the non-satisfactory values is 
similar as a fuzzy number to the linguistic 
value non-satisfactory for the global equil i-
bration degree). It was needed to introduce 
know ledge under the form of some uncertain 
facts of the type (X1 X2 X3 X4 ?vq), (X1 X2 
X4 ?vq), (X3 X4 X5 X6 ?vq), (X1 X3 X4 X5 
X6 ?vq), (X2 X4 X5 X6 ?vq)  certifying the 
fact that the equilibration can take place con-
tinuously, partially, or gradually as well as a 
large number of meta-rules having all these 
facts. They are to be sequentially activated 
(under the form (R13, R14), (R13, R15), 
(R16, R17), (R16, R24), (R18, R19), (R18, 
R25), (R20, R21), (R22, R23)) and they sup-
port the fuzzy decision synthesis. Obviously 
this guiding model observes the stages for the 
linguistic model synthesis from the know l-
edge acquisition point of view and the 
knowledge and meta-knowledge representa-
tion as per the CFKBS. The exploration of 
this model implies the calculation of the 

fuzzy unification and of the partial shaped 
conclusion through the diagram of the gene r-
alized modus ponens, the apply for the pro-
cedures within the rules consequent and a 
certain control model, the dynamic update of 
the rules priorities as per the current unce r-
tainty of all the involved knowledge at a cer-
tain moment in the synthesis process of the 
decision, the sequence of the fuzzy meta –
rule as well as the demonstration of the 
global asymptotic  stable behavior of the 
closed- loop system. The ≥∗ and =∗  of the 
Mk compiled model structure allow the un-
certain comparison of the current loads va l-
ues X1,….,X6.  
 
The MF fuzzy model for this case is: 
1. If ((≥*(X1 ?x) (X2 ?y)) ∧ (≥*(X1 ?x) (X3 
?z))∧(≥*(X1 ?x) (X4 ?v)) ∧ (≥*(X1  ?x) (X5 ?w)) ∧ 
(≥*(X1 ?x) (X6 ?ξ)) ∧ (¬ (Fa1 ?v1)) ∧ (¬(Fa3 ?v3)) ∧ 
(¬(=*(X1 ?x)(X2 ?y))) ∧ (ge *n)) else ((x1b 1) ∧(x3b 
0) ∧ (x5b 0) ∧(x7b 0) ∧ (x9b 0) ∧(x10b 0) ∧ (x11b 0) 
∧ (x2b 1)) 
2. If ((≥*(X1 ?x) (X2 ?y)) ∧ (≥*(X1 ?x)  (X3 ?z)) ∧ 
(≥*(X1 ?x) (X4 ?v)) ∧ (≥*(X1 ?x) (X5 ?w)) ∧ 
(≥*(X1 ?x) (X6 ?ξ)) ∧ (¬ ( Fa2 ?v 2)) ∧ (¬(=* (X1 ?x) 
(X3 ?z))) ∧ (≥* (X1 ?x) (CFS *zero)) ∧ (ge *n)) else 
((x1b 2) ∧ (x2b 0) ∧(x4b 0) ∧ (x6b 0) ∧ (x7b 0) ∧ 
(x9b 0) ∧ (x10b 0) ∧ (x11b 0) ∧ (x3b 1)) 
3. If ((≥*(X2 ?y) (X1 ?x)) ∧ (≥*(X2 ?y) (X3 ?z)) ∧ 
(≥* (X2 ?y) (X4 ?v)) ∧ (≥* (X2 ?y) (X5 ?w)) ∧ (≥* 
(X2 ?y) (X6  ?ξ)) ∧ (¬(Fa3 ?v3)) ∧ (¬(Fa1 ?v1)) ∧ 
(¬(=* (X1 ?x) (X2 ?y))) ∧ (ge *n)) else ((x1b 3) ∧ 
(x3b 0) ∧ (x5b 0) ∧ (x7b 0) ∧ (x9b 0) ∧ (x10b 0) ∧ 
(x11b 0) ∧ (x4b 1)) 
4. If ((≥*(X3 ?z)(X1 ?x)) ∧ (≥* (X3 ?z) (X2 ?y)) ∧ (≥* 
(X3 ?z) (X4 ?v)) ∧ (≥* (X3 ?z) (X5 ?w)) ∧ (≥*(X3 ?z) 
(X6 ?ξ)) ∧ (¬  (Fa4 ?v 4)) ∧ (¬(=*(X3 ?z) (X5 ?w)))  ∧ 
(≥*(X1 ?x) (CFS *zero)) ∧ (ge *n)) else ((x1b 4) ∧ 
(x2b 0) ∧ (x4b 0) ∧(x6b 0) ∧ (x7b 0) ∧ (x9b 0) ∧ 
(x10b 0) ∧ (x11b 0) ∧ (x5b 1)) 
5. If((≥*(X3 ?z)(X1 ?x)) ∧ (≥* (X3 ?z) (X2 ?y)) ∧ (≥* 
(X3 ?z) (X4 ?v)) ∧ (≥* (X3 ?z) (X5 ?w)) ∧ (≥* 
(X3 ?z) (X6  ?ξ)) ∧ (¬ (Fa5 ?v5)) ∧ (=* (X1 ?x) (CFS 
*zero)) ∧ (ge *n))  else ((x1b 5) ∧(x2b 0) ∧(x3b 0) ∧ 
(x4b 0) ∧ (x5b 0) ∧ (x7b 0) ∧ (x9b 0) ∧ (x10b 0) ∧ 
(x11b 0) ∧ (x6b 1)) 
12. If  (ge *n) ∧ (x12b 1) else ((x1b 0) ∧ (x2b 0) ∧ 
(x3b 0) ∧ (x4b 0) ∧ (x5b 0) ∧ (x6b 0) ∧ (x7b 0) ∧ (x8b 
0) (x9b 0) ∧ (x10b 0)) ∧ Init(Modul de control) 
13. If (X1 ?x)∧(X2 ?y)∧(X3 ?z)∧ (X4 ?v) ∧ (ge *n) ∧ 
(gep 1 *b) else (X1 X2 X3 X4 ?vq) ∧ (gep 1 *b1) 
14. If (X1 X2 X3 X4 ?vq) ∧ (ge *n) ∧ (gep1 *b) ∧(d56 
*ma) else (gep1 *b1) ∧ Init(r8) 
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15. If (X1 X2 X3 X4 ?vq) ∧ (ge *n) ∧ (gep 1 *b) ∧(d35 
*ma)  else (gep1 *b1) ∧ Init(r4) 
16. If (X1 ?x) ∧(X2 ?y) ∧ (X4 ?v) ∧ (ge *n) ∧ (gep2 
*b) else (X1 X2 X4 ?vq) ∧ (gep 2 *b1) 
17. If (X1 X2 X4 ?v q) ∧ (ge *n) ∧ (gep2 *b) ∧(d13 
*ma) else (gep2 *b1) ∧ Init(r2) 
18. If (X3 ?z)∧(X4 ?v)∧(X5 ?w)∧(X6 ?ξ)∧(ge 
*n)∧(gep3 *b) else (X3 X5 X6 ?vq)∧(gep 3 *b1) 
19. If (X3 X4 X5 X6 ?vq) ∧ (ge *n) ∧ (gep 3 *b) ∧(d21 
*ma) else (gep3 *b1) ∧ Init(r3) 
20. If (X1 ?x) ∧(X3 ?z)∧(X4 ?v)∧(X5 ?w)∧(X6 
?ξ)∧(ge *n) ∧ (gep4 *b) else (X1 X3 X4 X5 X6 ?vq) ∧ 
(gep 4 *b1) 
21. If (X1 X3 X4 X5 X6 ?vq) ∧ (ge *n) ∧ (gep 4 *b) 
∧(d42 *ma) else (gep4 *b1) ∧ Init(r6) 
22. If (X2 ?y)∧(X4 ?v)∧(X5 ?w)∧(X6 ?ξ) ∧ (ge *n) ∧ 
(gep 5 *b) else (X2 X4 X5 X6 ?vq) ∧ (gep 5 *b1) 
23. If (X2 X4 X5 X6 ?vq) ∧ (ge *n) ∧ (gep 5 *b) ∧(d43 
*ma) else (gep5 *b1) ∧ Init(r7) 
24. If (X1 X2 X4 ?v q) ∧ (ge *n) ∧ (gep2 *b) ∧(d56 
*ma) else (gep2 *b1) ∧ Init(r8) 
25. If (X3 X4 X5 X6 ?vq) ∧ (ge *n) ∧ (gep 3 *b) ∧(d13 
*ma)  else (gep3 *b1) ∧ Init(r2) 
 
The distinct motives occurring within the 
guiding model as per the CFKBS can be 
grouped into subsets of motives according to 
the length feature such:  
i) the motives of 2 length are: M1=(X1 ?x), 
M 2=(X2 ?y), M3=(X3 ?z), M 4=(X4 ?v), M5=(X5 ?w), 
M 6=(X6 ?? ),  M 7=(Fa1 ?v1), M 8=(Fa2 ?v2), M9=(Fa3 
?v3) ,  M10=(Fa4 ?v4), M11=(Fa5 ?v5),  M12=(Fa6 ?v6), 
M 13=(Fa7 ?v7), M14=(Fa8 ?v8), M15=(Fa9 ?v9), 
M 16=(Fa10 ?v10), M17=(x12b 1), M18= (ge *n), 
M 19=(gep1 *b), M20=(gep2 *b), M21=(gep 3 *b), 
M 22=(gep4 *b), M23=(gep 5 *b), M24=(d56 *ma), 
M 25=(d 35 *ma), M26=(d13 *ma), M27=(d21 *ma), 
M 28=(d 42 *ma), M29= (d43 *ma);  
ii) the motives of 3 length are: M 30=(≥*(X1 
?x)(X2 ?y)), M31=(≥*(X1 ?x)(X3 ?z)), M32=(≥* (X1 
?x)(X4 ?v)), M33=(≥*(X1 ?x)(X5 ?w)), M34= (≥* (X1 
?x)(X6 ?? )), M35=(=*(X1 ?x)(X2 ?y)), M36=(≥*(X1 
?x)(CFS *zero)), M37=(≥*(X2 ?y)(X1 ?x)), 
M 38=(≥*(X2 ?y)(X3 ?z)), M39=(≥*(X2 ?y)(X4 ?v)), 
M 40=(≥*(X2 ?y)(X5 ?w)), M41=(≥*(X2 ?y)(X6 ??)),  
M 42=(=*(X1 ?x) (X3 ?z)), M43=(≥*(X3 ?z)(X1 ?x)), 
M 44=(≥*(X3 ?z)(X2 ?y)), M45=(≥*(X3 ?z)(X4 ?v)), 
M 46=(≥* (X3 ?z)(X5 ?w)), M47=(≥*(X3 ?z)(X6 ??)),  
M 48= (=* (X3 ?z)(X5 ?w)), M49=(=*(X1 ?x) (CFS 
*zero)), M50= (≥*(X4  ?v)(X1 ?x)), M51=(≥*(X4 ?v) 
(X2 ?y)), M52= (≥* (X4  ?v) (X3 ?z)), M53= (≥*(X4  
?v)(X5 ?w)), M54=(≥*(X4  ?v)(X6 ?ξ)), M55= (=*(X4 
?v)(X2 ?y)), M56=(≥*(X5 ?w)(X1 ?x)), M57=(≥*(X5 
?w) (X2 ?y)), M58=(≥*(X5 ?w)(X3 ?z)), M59=(≥*(X5 
?w)(X4 ?v)), M60=(≥* (X5 ?w)(X6 ?ξ)), M61= (=* (X5 
?w)(X6 ?ξ)), M62= (≥* (X6 ?ξ)(X1 ?x)), M63= (≥*(X6 

?ξ)(X2 ?y)), M64=(≥*(X6 ?ξ)(X3 ?z)), M65=(≥*(X6 
?ξ)(X4 ?v)), M66=(≥*(X6 ?ξ)(X5 ?w)), M67=(=* (X6 
?ξ)(X4 ?v)), M68=(=*(X1 ?x)(X4 ?v)), M69= (=* (X1 
?x)(X5 ?w)), M70=(=*(X1 ?x)(X6?ξ));  
iii) the motive of 4 length is: M 71=(X1 X2 X4 
?vq);  
iv) the motives of 5 length are: M72=(X1 X2 X3 
X4 ?v q), M73=(X3 X4 X5 X6 ?vq), M 74=(X2 X4 X5 
X6 ?v q);  
v) the motives of 6 length are: M75=(X1 X 3 X4 
X5 X6 ?vq). 
 
The processing algorithm 
1) The fuzzy initial loads µ xi0 are introduced;  
2) The expected average value µc0= Σ i=1,6  
µxi0

/6, the fuzzy distances µdi0
=µxi0

-µc0, as 

well as the initial equilibration degree ge0= 
maxi=1,6 {µdi0} are to be calculated;  
3) The fuzzy sets *s (by testing it is con-
trolled in accordance with the initial values 
of the characterized loads of the s* fuzzy 
multitude), *n=tp(3 ge0 2 2) (by testing it is 
controlled d and δ in accordance with the 
loads initial values) as well as the facts 
(ge*n) and ge * s) are generated; 
4) Initialize xb=(xb1,xb2) where xb1=0  and 
dim(xb1)=12, xb2 contains the added initial 
facts to all the linguistic variables that inter-
fere into the allocation model of the type: 
((X1 ?x), (X2 ?y), (X3 ?z), (X4 ?v), (X5 ?w), 
(X6 ?ξ), (X1 X2 X3 X4  ?vq), (X1 X2 X4 
?vq), (X3 X4 X5 X6 ?vq), (X1 X3 X4 X5 X6 
?vq), (X2 X4 X5 X6 ?vq), (X1 X2 X4 ?vq), 
(X12b 1), (ge *n), (CFS *zero), (gep1 *b), 
(d56 *ma), (d35 *ma), (gep2 *b), (d13 *ma), 
(gep3 *b), (d21 *ma), (gep4 *b), (d42 *ma), 
(gep5 *b) , (d43 *ma), with the effective 
evaluation of the all fuzzy variables occur-
ring into the structure of the CFKBS status 
component. It is launched as an initial fact 
added to the motive (ge* n) fact (ge * v0) 
where  * v0 is generated as a fuzzy set about 
the value ge0 of the form (constfaz *v0(tp 
ge0-1 ge0+1 2 2)) and  x int = 0 is also initi-
ated.  
5) Within the consequents of the rules R1-
R10, the calculation of the ge equilibration 
degree with its new fuzzy value is also 
added, meaning that the new fact (ge * vk), k 
≥ 1 is generated 
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6) If the inference engine stops on the other 
facts rather that the activation one and the 
execution of the 11 rule, then the fuzzy dif-
ferences µdik

=µxik
-µc0  are recalculated  with 

the determination of the i system (i=1,…6) 
and of the corresponding j rule (j=1,….,25) 
that will be activated, as per the satisfaction 
of the equilibration object at a certain current 
moment, using the meta -rules or keeping on 
the execution the control module. 
Finally, the organization way/methods for the 
tests is shown in the below table. They have 
been achieved with the help of the CFKBS 
system interference motor, using a compiled 

specific model FPS. The “x0” mark has been 
used for a fuzzy T- number x0.  
If there are introduced the fuzzy linguistic 
models within an expert system, this system 
becomes more complicated because of the 
taking into consideration of the fuzzy proc-
essing at all the system levels of the type: the 
fuzzy filtering/pattern-matching, the com-
patibility of the fuzzy sets, the fuzzy unifica-
tion, the calculus of the inferred conclusion 
together with the calculation of the parame-
ters propagation, which manage the unce r-
tainty, the selection strategies in which they 
are naturally included and imprecise ele-
ments of the factual knowledge.  

 

Test 
Nr. 

µx1 µx2 µx3 µx4 µx5 µx6 µ x  The de gree 
of equil. 

*s,*n,*b, 
*mi,*ma 

The characteristics of 
the tests 1,2,3,4,5,6 

1. "200" "200" "200" "0" "0" "0" "100" A3 specific General behavior of the 
fuzzy inference engine 

2. "200" "0" "0" "0" "0" "0" "33" A3 specific 

Non-accomplishment of 
the guiding object through 
the neutraliz ation of meta-
rules 

3. "200" "0" "0" "0" "0" "400" "100" A3 specific 
The accomplishment of 
the  guiding object using 
only fuzzy rules   

4. "1223" "310" "445" "907" "38" "742" "610.8" A3 specific The occurrence of the dy-
namic circularity 

5. "77" "88" "205" "382" "166" "0" "153" A3 specific The fuzzification influ-
ence  

6 "100" "100" "100" "0" "100" "0" "50" A3 specific The control module use 
The organization of FPS tests 

 

4. Conclusions  
It is obvious that the open-loop plant has cy-
clic properties that may prevent the open-
loop from achieving the desired control ob-
jective. When closed-loop fuzzy expert con-
trol is used, as in our example, the invariant 
set exists, by simple analysis of the system 
dynamics. Using a search algorithm, we 
show that there exists at least one path from 
any given initial part distribution in the FPS.  
The reachability result (the FPS described 
above is reachable for all initial states, be-
cause there exists a sequence of events to oc-
cur that produces a state trajectory, so that 
the end state of the plant is in the invariant 
set). In our fuzzy expert system, any rule 
whose "partially matches" the current data 
can "fire" (i.e., contribute to specifying the 
control input). In the fuzzy expert system we 
consider here, there may be more than one 

rule whose antecedent "exactly matches" the 
current data, but our inference engine allows 
only one rule to fire at a time. 
We have shown that conventiona l know l-
edge-based debugging tools can ignore im-
portant dynamic behavior that can result 
from connecting the full fuzzy expert system 
(i.e., with an inference engine) to user inputs 
and a dynamical process. We have illustrated 
the results by modeling and analyzing expert 
systems that solve a FPS as a simple process 
control problem.  
The results of this paper shows that fuzzy 
expert control system are a class of (heuristi-
cally constructed) nonlinear control systems 
that can be studied with the analytical tools 
available from conventional control theory.  
It is hoped that the work reported in this pa-
per serves to promote the development of a 
firm mathematical foundation on which to 
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perform careful analysis for the verification 
and validation of the dynamics of expert con-
trol systems that operate in critical environ-
ments. There are important another future di-
rections for this work, investigating the dy-
namics of AI reasoning systems that utilize 
learning and planning in various complex 
applications, studying computational com-
plexity issues relative to conflict resolution 
strategies and metaknowledge representation, 
and mode ling realistic industrial or economic 
application that involve knowledge -based 
systems. 
In the future we should develop several dif-
ferencing features of learning forms in our 
conceptual CFKBS, as a multiagent system, 
for structuring: the degree of decentralization 
(concerns distributedness and parallelism), 
interaction-specific features, required for re-
alizing a decentralized learning process (e. g. 
planning, infe rence or decision steps, that are 
executed to achieve a particular learning 
goal), involvement-specific features (the rele-
vance of involvement and the role played 
during involvement), goal-specific features, 
the learning method, the learning feedback . 
These features characterize learning in multi-
agent systems from different points of view 
and at different levels. Agents having a lim-
ited access to relevant information run the 
risk of failing in solving a given learning 
task. This risk may be reduced by enabling 
the agents to explicitly exchange informa-
tion, to communicate with each other. Gene r-
ally, the following two forms of improving 
learning by communication may be distin-
guished: 
§ learning based on low-level communica-
tion, that is, relatively simple query-and-
answer interactions for the purpose of ex-
changing missing pieces of information 
(knowledge and belief);  
§ learning based on high-level communic a-
tion, that is, more complex communicative 
interactions like negotiations and mutual ex-
planation for the purpose of combining and 
synthesizing pieces of information. 
Our PES must be designed so that it can co-
ordinate the use of the plant outputs and re f-
erence (user) inputs, to decide what plant  

command inputs (or hypothesis/conclusions) 
to generate so that the closed-loop specifica-
tions are met. Although the PES are fre-
quently being used to perform complex con-
trol functions, most often it is the case that no 
formal analysis of the dynamics is conducted 
because mathematical analysis of such sys-
tems is considered to be beyond the scope of 
conventional control theory. 
We have shown that conventional know l-
edge-based debugging tools can ignore im-
portant dynamic behavior that can result 
from connecting the full fuzzy expert system 
(i.e., with an inference engine) to user inputs 
and a dynamical process. The results of this 
paper shows that the dynamic of a fuzzy ex-
pert control system is equivalent to improve 
the knowledge about a class of (heuristically 
constructed) nonlinear control systems that 
can be studied with the analytical tools avail-
able from conventional control theory. 
There are important another future directions 
for this work, investigating the dynamics of 
AI reasoning systems that utilize learning 
and planning in various complex applica-
tions, studying computational complexity is-
sues relative to conflict resolution strategies 
and metaknowledge representation, and mo-
deling realistic industrial or economic appli-
cations that involve CFKBSs. 
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