
Economy Informatics, no. 1/2002 73

Control Structure Oriented Software Testing

Prof. Ion IVAN PhD., Assist. Paul POCATILU
Economy Informatics Department, Academy of Economic Studies Bucharest

Anca Andreea IVAN, New York University, USA

This paper defines techniques for testing homogeneous procedures that form complex soft-
ware products. First, we establish the volume of test data for each control structure. Then, we
analyze the effects of the testing process for program sequences that include linear structures,
alternative structures, including compound ones, repetitive structures, embedded structures,
and procedures.
Keywords: software testing, control structures, testing code, test data.

Testing linear procedures
Linear procedures include sequences of

instructions that are executed one after an-
other one. There are no unconditional
jumping instructions, no cond itional jump-
ing instructions, and no multiple alterna-
tive structures. A linear procedure looks
like:

type procedure_name(type p1, type
p2,…, type pk)
{ I1

I2
I3
…
Ik
…
In
return (return_value);

}

The instructions are executed in order, as
shown in figure 1.

I1 Ik In-1 In

Fig. 1. Graph associated to

the linear structure

The next step is to construct the matrix
with instruction dependences (table 1). The
elements in the matrix aij are equal to ’*’
when there is no dependence between in-
struction i and instruction j. If instruction i
depends on instruction j, the element of the
matrix is set to ‘d’.

Table 1. The matrix with instruction
dependences

 I1 I2 … In-1 In
I1 * * * *
I2 d * * *
…
In-1 * d * *
In * d … d *

By analyzing the matrix with instruction
dependences, it results that instruction I2,
I3 and In-1 depend on the previous instruc-
tions, respectively I1, I2, and I3. In addi-
tion, the instruction In indirectly depends
on the previous instructions I1, I2, …, In-
1. For example, let’s consider the Calcul()
procedure that evaluates the expression
e=(a+b-a+5+8)2, using a series of interme-
diary subexpressions.

int Calcul(int a,int b,int
c,int d, int e, int f)
{

a=3; // I1
b=5; // I2
c=a+5; // I3
d=b-a; // I4
f=c+8; // I5
e=d=f; // I6
return e*e; // I7

}

Table 2 shows the parameter domain for
the Calcul() function. The matrix with in-
struction dependences is given in table 3.

1

Economy Informatics, no. 1/2002 74

Table 2. Parameter domain for the Calcul function
Parameter Type Domain

a,b,c,d,e,f int -2147483648…+2147483647

Table 3. The matrix with instruction dependences for the Calcul function
 I1 I2 I3 I4 I5 I6 I7

I1 * * * * * *
I2 * * * * * *
I3 d * * * * *
I4 d d * * * *
I5 d d d * * *
I6 d d * d d *
I7

The cyclomatic complexity for the Cal-
cul() procedure is CV(G)=1. There is only
one succession of arcs in the procedure be-
cause there are no alternative or repetitive
instructions. This leads to the existence of
only one test data to execute all instruc-
tions.

A significant data set is constructed based
on the matrix with instruction depend-
ences. This set should highlight the fact
that the procedure leads to correct and
complete results (table 4).

Table 4. The set of test data for the Calcul() procedure
Data a b C d f e e*e
D1 0 0 5 0 13 13 169
D2 0 -13 5 -13 13 0 0
D3 1 1 6 0 14 14 196
D4 1 -1 6 -2 14 12 144
D5 -1 1 4 2 12 14 196

When analyzing and designing the test
cases, the procedure testing cost is given
by the expression:

321 CCCC ++=
where C1 is the cost to build the table of
variable domains, C2 is the cost to build
the matrix of dependences and C3 is the
cost to build the testing tests.
All these costs depend on the activity dura-
tions, the number of involved persons, and
their salaries.
The costs of the test sets depend on the
data volume and the way they were ob-
tained. The cost of obtaining a test set by
analyzing the problem specifications and
the algorithm that solves the problem is
bigger than the cost of obtaining the test
set by analyzing the limit values.

The cost of obtaining the test sets, C3, is

given by the formula: ∑
=

=
N

i
iiVcC

1
3 , where

ci is the cost of obtaining the test set for
volume Vi. After running experiments and
obtaining measurements, one can unites
the resulted data such that the costs Ci and
the volumes Vi are the results of work
normalization.

2. Testing the alternative procedures
The procedures that mainly contain if-
then-else instructions and implement alter-
native structures are called if-then-else
procedures or alternative procedures.
Figure 2 a) illustrates the structure of an al-
ternative procedure, and figure 2 b) pre-
sents the graph associated to such a proce-
dure. Figure 3 presents the tree structure
associated to it.

Economy Informatics, no. 1/2002 75

type procedure_name(type1 p1,
 type2 p2,…,
 typek pk)
{
 if(expression1)

{
 B11
}
else
{
 B12
}
…
if(expressionk)
{
 Bk1
}
else
{
 Bk2
}
…
if(expressionn)
{
 Bn1
}
else
{
 Bn2
}
return (return_value);

}
a)

expression1

B11 B12

expression2

B21 B22

expressionk

Bk1 Bk2

expressionn

Bn1 Bn2

return
b)

Fig. 2. The structure and the graph associated to an alternative procedure

expression1

B11 B12

expression2
B21 B22

expression2

B21
B22

expressionn

Bn1 Bn1

expressionn

Bn2 Bn1

expressionn

Bn2 Bn1

expressionn

Bn2 Bn2

DA NU

Fig. 3. Tree structure associated to an alternative procedure

The number of paths in an alternative pro-
cedure that contains n if-then-else instruc-
tions is 2n.
Let’s consider the function Minim() that
computes the minimum between three in-
tegers:

int Minim(int a, int b, int c)

{
 int min;
 min=a;

 if(min>b)
 min=b;
 if(min>c)
 min=c;
 return min;
}

The graph associated with the function
Minim() is presented in figure 4 a) and the
tree structure is illustrated in figure 4 b).

Economy Informatics, no. 1/2002 76

min>b

min=b ;

min>c

min=c ;

return min

min=a

a

b

f

h

g

j

i

c e

d

k

a)

min>b

min=b ;

min>c

min=c
;

return min

min=a

min>c

min=c

return min return min return min

b)
Fig. 4. The graph (a) and the tree structure (b) associated to the function Minim

The graph from figure 4 a) has the cyclo-
matic number equal to CV(G)=3. Thus,

three test examples are chosen to execute
all instructions in all possible paths.

Table 5. Test cases to cover all possible instructions and branches.

No. Input Path Output
1 3,2,1 abcfghk c 1
2 2,3,1 adefghk c 1
3 1,3,2 adefijk a 1

The procedure is not very complex. Ana-
lyzing the conditions after the BRO

[PRES00] strategy leads to the following
possibilities.

C1: min>b C2: min>c
min=a

1) a=b
2) a<b
3) a>b

F
F
T

min=b

4) b=c
5) b<c
6) b>c

F
F
T

 min=a

7) a=c
8) a<c
9) a>c

F
F
T

Table 6 presents the test cases chosen based on these results.
Table 6. Test data for the function Minim()

No. Covered situa-
tions

Inputs Outputs

1 1), 7) a=b=c 1,1,1 a 1
2 1), 8) a=b>c 2,2,1 c 1
3 1), 9) a=b<c 1,1,2 a 1
4 2), 7) a<b, a=c 1,2,1 a 1
5 2), 8) a<b, a<c 1,2,3 a 1
6 2), 9) a<b, a>c 2,3,1 a 1
7 3), 4) a>b=c 2,1,1 b 1
8 3), 5) a>b<c 2,1,3 b 1
9 3), 6) a>b>c 3,2,1 c 1

If the alternative procedures lead to a very
large number of possible paths, the paths

are divided into a hierarchy of binary sub-
trees and the tests focus on these subtrees.

Economy Informatics, no. 1/2002 77

3. Repetitive procedures
The procedures that include a repetitive
structure such as for, while or do…while
are called repetitive procedures and look
like this:

type procedure_name(type1
p1, type2 p2,…, typek pk)
{

for(expr)
{
 I1
 I2
 I3
 …
 In
}
return (return_value);

}
or

type procedure_name(type1
p1, type2 p2,…, typek pk)
{

while(expr)
{
 I1
 I2
 I3
 …
 In
}
return (return_value);

}
or

type procedure_name(type1
p1, type2 p2,…, typek pk)
{

do
{
 I1
 I2
 I3
 …
 In
}
while(expr);
return (return_value);

}
The I1, I2, …, instructions are organized in
a linear structure Si that can be repeatedly
executed for a number of times. The num-
ber of repetitions depends on the control
variable i that is evaluated in an relational
expression. The reputed execution of the
sequence generates a sequence of se-
quences Si1, Si2, …, Sim.

Depending on the position of the relational
expression, the repetitive procedure is as-
sociated with one graph or another one.
Figure 6 illustrates some possible graphs.

if

I1

I2

I3

In-1

In

a) for, while

if

I1

I2

I3

In-1

In

b) do…while

Fig. 6. The graph associated to
a repetitive procedure

The repetitive structure belonging to a pro-
cedure can be:
• simple, when there is only one repetitive
sequence
• concatenated, when there are several re-
petitive sequences, one after another one
• embedded, when there are several re-
petitive structures, one inside another one.
Testing a repetitive procedure reduces to
testing a sequence Si and the sequences
Si1, Si2, …, Sim. The intermediary results
obtained when testing each sequence Sij,
j=1, 2, …m are as important as the results
obtained from the final testing of the se-
quence of sequences. The testing results
divide the sequences into two classes:
• the class of sequences executed accord-

ing to the S’ specifications;
• the class of sequences with errors S’’.
In the case of the class S’’, one needs to
identify a cause. If there are several causes,
one needs to analyze the matrix of prece-
dence defined for the linear structure in-
cluded in the repetitive block.
The graph associated to the sequence of
sequences is:

I1 I2 …In if I1 I2 …In if…I1 I2… In if

 S1 S2 Sn
 or

if I1 I2 …In if I1 I2 …In…if I1 I2… In

 S1 S2 Sn

Economy Informatics, no. 1/2002 78

The score of testing the sequence is com-
puted using the formula Sij,.





=
executioneroneous,0

executioncorrect ,1
)(jSiα

If the correctness degree,

BABABA
m

Si

C

m

j
j

<∈∈=
∑

=
],1,0[,],,[

)(
1

α

where A and B are given in the specifica-
tions, then the repetitive procedure is ac-
cepted in the finite product. The indicator
C is used to compute the experimental reli-
ability of the final software product.
The test data for the simple repetitive se-
quences and the independent concatenated
sequences are chosen as follows:
• value 0, no iteration
• value n, the maximum number of itera-

tions
• value k, where 0<k<n
• value n-1
• value n+1.
For the embedded repetitive sequences, the
test data is chosen by first starting with the
interior repetitive structure that will be
tested with the values 0, n, k, n-1 and n+1
while the other repetitive structures are
kept to the minimum value of iterations.
Then, the process is continued towards the
exterior for all other repetitive structures
until the entire sequence of instructions as-
sociated to the embedded repetitive struc-
ture is tested.
Let’s consider the procedure that computes
the sum of the elements on a row in a ma-

trix AMN, when all elements are integers.
The result will be a vector with the number
of elements equal to M, the number of
rows in the matrix A.
The source code for the procedure is:

#define N 10
#define M 10

void SumRows(int a[M][N],
int m, int n, int *sum)
{
 for(int i=0;i<m;i++)
 {
 sum[i]=0;
 for(j=0;j<n;j++)

sum[i]+=a[i][j];

 }
}

a

b
c

g e

d

f

Fig. 7. The graph associated to

the procedure SumRows()

The cyclomatic complexity of the function
SumRows() is CV(G)=3. Thus, three test
cases should be enough to traverse all the
instructions and independent branches. The
test cases are presented in table 7.

Table 7. The test cases to cover all possible paths
No. Inputs Path Outputs

1 a={{1,1,1},{10,10,10},{100,100,100}}
m= 3
n= 3

 sum={0,0,0}

abcdefg sum={3,30,300}

2 a={{1,1,1},{10,10,10},{100,100,100}}
m= 0
n= 3

 sum={0,0,0}

ag sum={0,0,0}

3 a={{1,1,1},{10,10,10},{100,100,100}}
m= 3
n= 0

 sum={0,0,0}

abefg sum={0,0,0}

Economy Informatics, no. 1/2002 79

The test data for the function SumRows(),
is chosen considering that the maximum
number is 10 and it is equal to the size of
the matrix.

m=1; n={0,1,3,9,10,11}
m={0,1,3,9,10,11}; n=1

The obtained test cases are presented in
Table 8.

Table 8. The test cases for testing
the repetitive structures

No. Inputs Outputs
1 a={{1}}

m= 1
n= 1

sum={0}

sum={1}

2 a={{1,1,1}}
m= 1
n= 3

sum={0}

sum={3}

3 a={{1,…,1,1}}
m= 1
n= 9

sum={0}

sum={9}

4 a={{1,…,1,1}}
m= 1
n= 10

sum={0}

sum={10}

5 a={{1,…,1,1}}
m= 1
n= 11

sum={0}

sum={10}
Error related
to a[0][10]

An error mes-
sage is ex-

pected
6 a={{1},{10},{100

}}
m= 3
n= 1

sum={0,0,0}

sum={1,10,10
0}

7 a={{1}, {1},…,
{1},{1}}

m= 9
n= 1

sum={0,…,0,0}

sum={1,1,…,
1,1}

8 a={{1}, {1},…,
{1},{1}}
m= 10
n= 1

sum={0,…,0,0}

sum={1,1,…,
1,1}

9 a={{1},{1},…,{1}
,{1}}

m= 11
n= 1

sum={0,…,0,0}

sum={1,1,…,
1}

Error related
to [10][0] and

sum[10]
An error mes-

sage is ex-
pected

4. Procedure with calls
The object oriented programming tech-
nique leads to building procedures that
contain calls to other procedures and func-
tions.
The construction looks like:

type procedure_name(type1
p1, type2 p2,…, typek pk)
{

for(expr)
{
 name1(param_list

_1);
 name2(param_list

_2);
 name3(param_list

_3);
 …
 na-

men(param_list_n);
}
return (return_value);

}

and is often seen in programs written by
programmers experienced in using func-
tion libraries.
Testing procedures where the semantics of
other procedure calls is not know requires
a new approach. The parameters lists of the
n procedure calls are used to generate the
dependences where one aij element can
take one of the values: I – if pj is an input
parameter for the procedure Pi, E – if pj is
an output parameter for the procedure Pi, S
– if pj is a state parameter for the proce-
dure Pi.
The element bij from the dependences be-
tween procedure calls is 1 if the output of
the procedure Pj is directly used by the
procedure Pi, and 0 otherwise. A procedure
Pi is strongly dependent on the procedures
that precede its call, if x=[0.72,1] of these
procedures have a number of output pa-
rameters are used as inputs in the proce-
dure Pi. A procedure Pi is strongly de-
pendent of the procedures that come after
it if x=[0.72,1] of these procedures use the
output of the procedure Pi as input parame-
ters. A procedure Pi is weakly dependent if
1-x of the procedures crate outputs for the
procedure Pi. Testing requires building the

Economy Informatics, no. 1/2002 80

dependence graph and traversing this
graph by covering all possible paths. Let’s
consider the procedure

int P0(int a, int b, int c)
{
 int x,y,z,w;

P1(a,b,x);
 P2(a,c,y);
 P3(b,c,z);

 P4(x,y,z,w);
return w;

}

The dependences matrix for the procedure
P0() is presented in Table 9, the depend-
ences graph is illustrated in Figure 8, and
Figure 9 shows the graph associated to the
procedure P0().

Table 9. The dependences matrix for procedure P0()
Procedure

Procedure
P0() P1() P2() P3() P4()

P0() 1 1 1
P1() 1
P2() 1
P3() 1
P4() 1

P0 P P4 P2

P1

P3
Fig. 8. The dependences graph

 P1 P2 P3 P4

Fig. 9. The graph associated to the proce-

dure P0()

The test cases for the procedure P0() are
built depending on the semantics of each
procedure call. Usually, one selects special
values that belong to the parameter domain
(0 or 1 or –1 or values closely located to
the ends of the intervals). These values are
then combined and used in testing by fol-
lowing rules specific to experience plan-
ning techniques from applied statistics
area.

5. Conclusions
Testing different types of procedures re-
quires building definitions for software
constructs enabled for maximum cohesion.
Each procedure is orthogonal to the other
procedures from the software product. This
means that each procedure achieves a well-
defined processing type that cannot be
found in the other procedures.

This type of homogeneous structures of
procedures, specific to the sequences in-
cluded in the procedure, creates a new ap-
proach for programming, characterized by
redundancy control and orientation to-
wards lower levels.
The specialization of cla sses of procedures
leads to an increase in productivity of the
testing process and to an efficient use of
the middleware that assists this process.

Bibliography
[ARHI00] Arhire, Romulus – Evaluating
complex programming systems – PhD The-
sis, The Academy of Economic Studies,
Bucharest, 2000
[BEIZ90] Beizer, Boris, Software Testing
Techniques – Second Edition, Van Nostrad
Reinhold, New York, 1990
[IVAN99] Ivan, Ion, Pocatilu, Paul – Test-
ing Object Oriented Software, Inforec Pub-
lishing, Bucharest, 1999
[POCA01b] Pocatilu, Paul – The Role of
Software Testing in Increasing the Soft-
ware Reliability, Proceedings of ”Software
Reliability Workshop”, Bucharest, 2001
[POCA02] Pocatilu, Paul – The Costs of
Software Testing, Informatics Economics
vol. VI, nr. 1, 2002, pp. 90-93
[PRES00] Pressman, Roger S. – Software
Engineering – A Practitioner’s Approach,
European Adaptation, Fifth Edition,
McGraw-Hill, 2000

