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This paper defines techniques for testing homogeneous procedures that form complex soft-
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Testing linear procedures 
Linear procedures include sequences of 

instructions that are executed one after an-
other one. There are no unconditional 
jumping instructions, no cond itional jump-
ing instructions, and no multiple alterna-
tive structures. A linear procedure looks 
like: 
 
type procedure_name(type p1, type 
p2,…, type pk) 
{ I1 

I2 
I3 
… 
Ik 
… 
In 
return (return_value); 

} 
 

The instructions are executed in order, as 
shown in figure 1. 

I1                  Ik              In-1          In  

 
Fig. 1. Graph associated to 

the linear structure 
 
The next step is to construct the matrix 
with instruction dependences (table 1). The 
elements in the matrix aij are equal to ’*’ 
when there is no dependence between in-
struction i and instruction j. If instruction i 
depends on instruction j, the element of the 
matrix is set to ‘d’. 
 

Table 1. The matrix with instruction 
dependences 

 I1 I2 … In-1 In 
I1 * *  * * 
I2 d *  * * 
…      
In-1 * d  * * 
In * d … d * 

 
By analyzing the matrix with instruction 
dependences, it results that instruction I2, 
I3 and In-1 depend on the previous instruc-
tions, respectively I1, I2, and I3. In addi-
tion, the instruction In indirectly depends 
on the previous instructions I1, I2, …, In-
1. For example, let’s consider the Calcul() 
procedure that evaluates the expression 
e=(a+b-a+5+8)2, using a series of interme-
diary subexpressions. 
 

int Calcul(int a,int b,int 
c,int d, int e, int f) 
{ 

a=3;      // I1 
b=5;      // I2 
c=a+5;    // I3 
d=b-a;    // I4 
f=c+8;    // I5 
e=d=f;     // I6 
return e*e; // I7 

} 
 
Table 2 shows the parameter domain for 
the Calcul() function. The matrix with in-
struction dependences is given in table 3.  

 
 

1 
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Table 2. Parameter domain for the Calcul function 
Parameter Type Domain 

a,b,c,d,e,f  int -2147483648…+2147483647 
 

Table 3. The matrix with instruction dependences for the Calcul function 
 I1 I2 I3 I4 I5 I6 I7 

I1 * * * * * *  
I2 * * * * * *  
I3 d * * * * *  
I4 d d * * * *  
I5 d d d * * *  
I6 d d * d d *  
I7        

 
The cyclomatic complexity for the Cal-
cul() procedure is CV(G)=1. There is only 
one succession of arcs in the procedure be-
cause there are no alternative or repetitive 
instructions. This leads to the existence of 
only one test data to execute all instruc-
tions. 

A significant data set is constructed based 
on the matrix with instruction depend-
ences. This set should highlight the fact 
that the procedure leads to correct and 
complete results (table 4). 

 
Table 4. The set of test data for the Calcul() procedure 
Data a b C d f e e*e 
D1 0 0 5 0 13 13 169 
D2 0 -13 5 -13 13 0 0 
D3 1 1 6 0 14 14 196 
D4 1 -1 6 -2 14 12 144 
D5 -1 1 4 2 12 14 196 

 
When analyzing and designing the test 
cases, the procedure testing cost is given 
by the expression: 

321 CCCC ++=  
where C1 is the cost to build the table of 
variable domains, C2 is the cost to build 
the matrix of dependences and C3 is the 
cost to build the testing tests. 
All these costs depend on the activity dura-
tions, the number of involved persons, and 
their salaries. 
The costs of the test sets depend on the 
data volume and the way they were ob-
tained. The cost of obtaining a test set by 
analyzing the problem specifications and 
the algorithm that solves the problem is 
bigger than the cost of obtaining the test 
set by analyzing the limit values.  

The cost of obtaining the test sets, C3, is 

given by the formula: ∑
=

=
N

i
iiVcC

1
3 , where 

ci is the cost of obtaining the test set for 
volume Vi. After running experiments and 
obtaining measurements, one can unites 
the resulted data such that the costs Ci and 
the volumes Vi are the results of work 
normalization. 
 
2. Testing the alternative procedures 
The procedures that mainly contain if-
then-else instructions and implement alter-
native structures are called if-then-else 
procedures or alternative procedures. 
Figure 2 a) illustrates the structure of an al-
ternative procedure, and figure 2 b) pre-
sents the graph associated to such a proce-
dure. Figure 3 presents the tree structure 
associated to it. 
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type procedure_name(type1 p1,  
                    type2 p2,…, 
                    typek pk) 
{ 
 if(expression1) 

{ 
 B11 
} 
else 
{ 
 B12 
} 
… 
if(expressionk) 
{ 
 Bk1 
} 
else 
{ 
 Bk2 
} 
… 
if(expressionn) 
{ 
 Bn1 
} 
else 
{ 
 Bn2 
} 
return (return_value); 

} 
a)  

expression1 

B11 B12 

expression2 

B21 B22 

expressionk 

Bk1 Bk2 

expressionn 

Bn1 Bn2 

return  
b) 

Fig. 2. The structure and the graph associated to an alternative procedure 
 

expression1 
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expression2 
B21 B22 

expression2 

B21 
B22 

expressionn 

Bn1 Bn1 

expressionn 

Bn2 Bn1 

expressionn 

Bn2 Bn1 

expressionn 

Bn2 Bn2 

DA NU 

 
Fig. 3. Tree structure associated to an alternative procedure 

 
The number of paths in an alternative pro-
cedure that contains n if-then-else instruc-
tions is 2n. 
Let’s consider the function Minim() that 
computes the minimum between three in-
tegers: 
 
int Minim(int a, int b, int c) 

{ 
 int min; 
 min=a; 

 if(min>b) 
  min=b; 
 if(min>c) 
  min=c; 
 return min; 
} 

 
The graph associated with the function 
Minim() is presented in figure 4 a) and the 
tree structure is illustrated in figure 4 b). 
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min>b 

min=b ; 

min>c 

min=c ; 

return min 

min=a 

a 

b 

f 

h 

g 

j 

i 

c e 

d 

k 

 
a) 

min>b 

min=b ; 

min>c 

min=c 
; 
 

return min 

min=a 

min>c 

min=c 

return min return min return min 

b) 
Fig. 4. The graph  (a) and the tree structure (b) associated to the function Minim 
 

The graph from figure 4 a) has the cyclo-
matic number equal to CV(G)=3. Thus, 

three test examples are chosen to execute 
all instructions in all possible paths. 

 
Table 5. Test cases to cover all possible instructions and branches. 

No. Input Path Output 
1 3,2,1 abcfghk c 1 
2 2,3,1 adefghk c 1 
3 1,3,2 adefijk a 1 

 
The procedure is not very complex. Ana-
lyzing the conditions after the BRO 

[PRES00] strategy leads to the following 
possibilities. 

C1:  min>b C2:  min>c 
min=a 

 
1) a=b 
2) a<b 
3) a>b 

 
 
F 
F 
T 

min=b 
 

4) b=c 
5) b<c 
6) b>c 

 
 

F 
F 
T 

 min=a 
 
7) a=c  
8) a<c  
9) a>c  

 
 

F 
F 
T 

Table 6 presents the test cases chosen based on these results. 
Table 6. Test data for the function Minim() 

No. Covered situa-
tions 

Inputs  Outputs  

1 1), 7) a=b=c 1,1,1 a 1 
2 1), 8) a=b>c 2,2,1 c 1 
3 1), 9) a=b<c 1,1,2 a 1 
4 2), 7) a<b, a=c 1,2,1 a 1 
5 2), 8) a<b, a<c 1,2,3 a 1 
6 2), 9) a<b, a>c 2,3,1 a 1 
7 3), 4) a>b=c 2,1,1 b 1 
8 3), 5) a>b<c 2,1,3 b 1 
9 3), 6) a>b>c 3,2,1 c 1 

 
If the alternative procedures lead to a very 
large number of possible paths, the paths 

are divided into a hierarchy of binary sub-
trees and the tests focus on these subtrees. 
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3. Repetitive procedures 
The procedures that include a repetitive 
structure such as for, while or do…while 
are called repetitive procedures and look 
like this: 
 

type procedure_name(type1 
p1, type2 p2,…, typek pk) 
{ 

for(expr) 
{ 
 I1 
 I2 
 I3 
 … 
 In 
} 
return (return_value); 

} 
or 

type procedure_name(type1 
p1, type2 p2,…, typek pk) 
{ 

while(expr) 
{ 
 I1 
 I2 
 I3 
 … 
 In 
} 
return (return_value); 

} 
or  

type procedure_name(type1 
p1, type2 p2,…, typek pk) 
{ 

do 
{ 
 I1 
 I2 
 I3 
 … 
 In 
} 
while(expr); 
return (return_value); 

} 
The I1, I2, …, instructions are organized in 
a linear structure Si that can be repeatedly 
executed for a number of times. The num-
ber of repetitions depends on the control 
variable i that is evaluated in an relational 
expression. The reputed execution of the 
sequence generates a sequence of se-
quences Si1, Si2, …, Sim. 

Depending on the position of the relational 
expression, the repetitive procedure is as-
sociated with one graph or another one. 
Figure 6 illustrates some possible graphs. 

 

if 

I1 

I2 

I3 

In-1 

In 

 
a) for, while 

 
if 

I1 

I2 

I3 

In-1 

In 

 
b) do…while 

Fig. 6. The graph associated to 
a repetitive procedure 

The repetitive structure belonging to a pro-
cedure can be: 
• simple, when there is only one repetitive 
sequence 
• concatenated, when there are several re-
petitive sequences, one after another one 
• embedded, when there are several re-
petitive structures, one inside another one. 
Testing a repetitive procedure reduces to 
testing a sequence Si and the sequences 
Si1, Si2, …, Sim. The intermediary results 
obtained when testing each sequence Sij, 
j=1, 2, …m are as important as the results 
obtained from the final testing of the se-
quence of sequences. The testing results 
divide the sequences into two classes: 
• the class of sequences executed accord-

ing to the S’ specifications; 
• the class of sequences with errors S’’.  
In the case of the class S’’, one needs to 
identify a cause. If there are several causes, 
one needs to analyze the matrix of prece-
dence defined for the linear structure in-
cluded in the repetitive block. 
The graph associated to the sequence of 
sequences is: 

 

I1 I2 …In if I1 I2 …In if…I1 I2… In if 

      S1     S2   Sn 
 or 

if I1 I2 …In if I1 I2 …In…if I1 I2… In 
 

      S1     S2   Sn 
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The score of testing the sequence is com-
puted using the formula Sij,. 





=
executioneroneous,0

executioncorrect ,1
)( jSiα  

 
If the correctness degree, 
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where A and B are given in the specifica-
tions, then the repetitive procedure is ac-
cepted in the finite product. The indicator 
C is used to compute the experimental reli-
ability of the final software product. 
The test data for the simple repetitive se-
quences and the independent concatenated 
sequences are chosen as follows:  
• value 0, no iteration 
• value n, the maximum number of itera-

tions 
• value k, where 0<k<n 
• value n-1 
• value n+1. 
For the embedded repetitive sequences, the 
test data is chosen by first starting with the 
interior repetitive structure that will be 
tested with the values 0, n, k, n-1 and n+1 
while the other repetitive structures are 
kept to the minimum value of iterations. 
Then, the process is continued towards the 
exterior for all other repetitive structures 
until the entire sequence of instructions as-
sociated to the embedded repetitive struc-
ture is tested. 
Let’s consider the procedure that computes 
the sum of the elements on a row in a ma-

trix AMN, when all elements are integers. 
The result will be a vector with the number 
of elements equal to M, the number of 
rows in the matrix A.  
The source code for the procedure is: 
 

#define N 10 
#define M 10 
 
void SumRows(int a[M][N], 
int m, int n, int *sum) 
{ 
 for(int i=0;i<m;i++) 
 { 
  sum[i]=0; 
  for(j=0;j<n;j++) 
    
sum[i]+=a[i][j]; 
  
 } 
} 
 

a 

b 
c 

g e 

d 

f 

 
Fig. 7. The graph associated to 

the procedure SumRows() 
 

The cyclomatic complexity of the function 
SumRows() is CV(G)=3. Thus, three test 
cases should be enough to traverse all the 
instructions and independent branches. The 
test cases are presented in table 7. 

Table 7. The test cases to cover all possible paths 
No. Inputs Path Outputs 

1 a={{1,1,1},{10,10,10},{100,100,100}} 
m= 3 
n= 3 

 sum={0,0,0} 

abcdefg sum={3,30,300} 

2 a={{1,1,1},{10,10,10},{100,100,100}} 
m= 0 
n= 3 

 sum={0,0,0} 

ag sum={0,0,0} 

3 a={{1,1,1},{10,10,10},{100,100,100}} 
m= 3 
n= 0 

 sum={0,0,0} 

abefg sum={0,0,0} 
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The test data for the function SumRows(), 
is chosen considering that the maximum 
number is 10 and it is equal to the size of 
the matrix.  

m=1; n={0,1,3,9,10,11} 
m={0,1,3,9,10,11}; n=1 

The obtained test cases are presented in 
Table 8. 
 

Table 8. The test cases for testing 
the repetitive structures 

No. Inputs Outputs 
1 a={{1}} 

m= 1 
n= 1 

sum={0} 

sum={1} 

2 a={{1,1,1}} 
m= 1 
n= 3 

sum={0} 

sum={3} 

3 a={{1,…,1,1}} 
m= 1 
n= 9 

sum={0} 

sum={9} 

4 a={{1,…,1,1}} 
m= 1 
n= 10 

sum={0} 

sum={10} 

5 a={{1,…,1,1}} 
m= 1 
n= 11 

sum={0} 

sum={10} 
Error related 
to a[0][10] 

An error mes-
sage is ex-

pected 
6 a={{1},{10},{100

}} 
m= 3 
n= 1 

sum={0,0,0} 

sum={1,10,10
0} 

7 a={{1}, {1},…, 
{1},{1}} 

m= 9 
n= 1 

sum={0,…,0,0} 

sum={1,1,…,
1,1} 

8 a={{1}, {1},…, 
{1},{1}} 
m= 10 
n= 1 

sum={0,…,0,0} 

sum={1,1,…,
1,1} 

9 a={{1},{1},…,{1}
,{1}} 

m= 11 
n= 1 

sum={0,…,0,0} 

sum={1,1,…,
1} 

Error related 
to [10][0] and 

sum[10] 
An error mes-

sage is ex-
pected 

 

4. Procedure with calls 
The object oriented programming tech-
nique leads to building procedures that 
contain calls to other procedures and func-
tions. 
The construction looks like: 

 
type procedure_name(type1 
p1, type2 p2,…, typek pk) 
{ 

for(expr) 
{ 
 name1(param_list

_1); 
 name2(param_list

_2); 
 name3(param_list

_3); 
 … 
 na-

men(param_list_n); 
} 
return (return_value); 

} 
 
and is often seen in programs written by 
programmers experienced in using func-
tion libraries.  
Testing procedures where the semantics of 
other procedure calls is not know requires 
a new approach. The parameters lists of the 
n procedure calls are used to generate the 
dependences where one aij element can 
take one of the values: I – if pj is an input 
parameter for the procedure Pi, E – if pj is 
an output parameter for the procedure Pi, S 
– if pj is a state parameter for the proce-
dure Pi. 
The element bij from the dependences be-
tween procedure calls is 1 if the output of 
the procedure Pj is directly used by the 
procedure Pi, and 0 otherwise. A procedure 
Pi is strongly dependent on the procedures 
that precede its call, if x=[0.72,1] of these 
procedures have a number of output pa-
rameters are used as inputs in the proce-
dure Pi. A procedure Pi is strongly de-
pendent of the procedures that come after 
it if x=[0.72,1] of these procedures use the 
output of the procedure Pi as input parame-
ters. A procedure Pi is weakly dependent if 
1-x of the procedures crate outputs for the 
procedure Pi. Testing requires building the 
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dependence graph and traversing this 
graph by covering all possible paths.  Let’s 
consider the procedure 

 
int P0(int a, int b, int c) 
{ 
 int x,y,z,w; 

P1(a,b,x); 
 P2(a,c,y); 
 P3(b,c,z); 

 P4(x,y,z,w); 
return w; 

} 
 
The dependences matrix for the procedure 
P0() is presented in Table 9, the depend-
ences graph is illustrated in Figure 8, and 
Figure 9 shows the graph associated to the  
procedure P0(). 

Table 9. The dependences matrix for procedure P0() 
Procedure 

Procedure 
P0() P1() P2() P3() P4() 

P0()  1 1 1  
P1()     1 
P2()     1 
P3()     1 
P4() 1     

 

P0 P P4 P2 

P1 

P3  
Fig. 8. The dependences graph 

 

 

  P1              P2              P3             P4 

 
Fig. 9. The graph associated to the proce-

dure P0() 
 
The test cases for the procedure P0() are 
built depending on the semantics of each 
procedure call. Usually, one selects special 
values that belong to the parameter domain 
(0 or 1 or –1 or values closely located to 
the ends of the intervals). These values are 
then combined and used in testing by fol-
lowing rules specific to experience plan-
ning techniques from applied statistics 
area. 
 
5. Conclusions  
Testing different types of procedures re-
quires building definitions for software 
constructs enabled for maximum cohesion. 
Each procedure is orthogonal to the other 
procedures from the software product. This 
means that each procedure achieves a well-
defined processing type that cannot be 
found in the other procedures. 

This type of homogeneous structures of 
procedures, specific to the sequences in-
cluded in the procedure, creates a new ap-
proach for programming, characterized by 
redundancy control and orientation to-
wards lower levels. 
The specialization of cla sses of procedures 
leads to an increase in productivity of the 
testing process and to an efficient use of 
the middleware that assists this process. 
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