
Economy Informatics vol. 12, no. 1/2012 85

Software Architecture for a Consensus Moderation System

Andrei TOMA

Bucharest University of Economics, Romania

andrei.toma@ie.ase.ro

Implementing a scalable consensus moderation system imposes certain restrictions on the

choices in employed software technologies, as well as in the general architectural approach.

Two approaches are necessary, due to the inclusion of a recommendation engine based on

previous user behavior, which is computationally intensive. Apart from the recommendation

engine, the system can be implemented with clarity of the model as a priority which will lead

to better future maintainability.

Keywords: Consensus Moderation, RIA, Java Enterprise

Introduction

The principles behind the construction of

a consensus moderation system have been

presented in [4].

The present contains a review of the architec-

tural choices that have been made in the con-

struction of the system, as well the reasons

for which certain technologies or approaches

were selected.

In order to implement a flexible architecture

for the system, certain considerations must be

taken into account.

The first decision which must be taken into

account is that of the type of application

which is to be implemented. While the sys-

tem is designed to facilitate the negotiation

between a small numbers of actors, it could

easily be adapted to cover decision in small

communities as long as the designed archi-

tecture is flexible enough.

A special consideration in the design of the

system is that some of the processing steps,

especially those pertaining to the recommen-

dation engine can be extremely time consum-

ing when applied to a large amount of data.

The first important design decision is that of

the type of application which the system is to

be implemented as. While desktop applica-

tions used to be the standard for application

solutions, today the most prevalent solution

is that of web or mobile applications. This

ensures that access to the system can be done

from heterogeneous platforms. This degree

of independence refers to independence of

the operating system on the users’ machines,

from the browser they opted for and to a cer-

tain extent from the installation of any addi-

tional applications.

It would also be preferable that the technolo-

gies employed ensure a high degree of scala-

bility in order to accommodate for future ap-

plication growth. By application growth I

refer to an increase in the number of users,

but also to an increase of the complexity of

interactions between the users.

Another important concern is that such an

application must have a high degree of relia-

bility. This must be ensured not only for the

first version of the application, but also for

future releases. As such, the technologies

employed should, to such an extent as to not

affect the performance of the application, be

easily maintained and decrease the coupling

between components.

The second important decision in establish-

ing the architecture of the system is what

kind of structures the application should

have. Here we must decide between a two-

tier design or an n-tier design.

A two tier design is similar to the classical

client server architecture, with the mention

that the server is usually a web server. This

architecture is easier to implement, but usual-

ly leads to a system which is less adaptable if

scalability issues arise.

An n-tier architecture adds additional com-

ponents, which in our case refers to the addi-

tion of an application server. An application

server adds to the flexibility of the system by

supporting advanced features such as object

lifecycle management and load balancing.

1

86 Economy Informatics vol. 12, no. 1/2012

There is, however, a middle ground solution

which allows for the application to be im-

plemented as a two tier system initially,

while allowing for an easy move to an n-tier

architecture. The solution is to use a techno-

logical solution which is configurable in that

the components are unaware of their contain-

er, be it an application server of a servlet

container running in a web server.

A summary of the application architecture is

presented in the figure below. Each compo-

nent, as well as the actual implementation

principles, will be explained further in this

paper.

Fig. 1. Used technologies

As we can see, the application employs a

Flex front-end and a JAX-WS back-end, run-

ning on Apache Tomcat. The JAX-WS web

services run inside an Apache Tomcat con-

tainer and access the data in two ways. If no

optimizations are necessary, data is accessed

through Hibernate which in turn uses JDBC

to communicate with the database. If the Hi-

bernate approach is not viable, JDBC is used

directly. Considering that the priority is the

execution of small transactions as fast as pos-

sible, the data is stored in MySql.

2 Front end

When choosing a possible implementation

for the application front-end, one decision is

paramount. Should the implementation be

based on a so called “thin client” or a “thick

client”.

A thin client is a client which uses only tech-

nologies which are supported by major web

browsers “out of the box” without additional

software extending the functionality of the

browser. A thin client depends on the back

end to run most of its processing. Thin clients

come with the advantage of requiring very

little maintenance on the client side since no

additional software has to be installed. How-

ever there are serious difficulties in imple-

menting a thin client which provides the

same functionality as a thick client. This can

negatively impact ease of use, since a full-

fledged user interface, based on a flexible

event model, is harder to design.

A thick client is a front end which does at

least part of the processing necessary for the

application on the client computer. Thick cli-

ents require the installation of additional

components on the client computer and thus

can lead to higher support costs if the users

are untrained.

The typical thick client used to be desktop

application connecting to a server. However,

with the advent of rich internet applications,

this is no longer the case. RIA’s provide sim-

ilar functionality to traditional applications

while running on a platform which is inte-

grated with the internet browser the client

already has.

An important question which must be an-

swered is if the existence of the browser

plug-in required to run the RIA can be as-

sumed. FLEX, which is the selected technol-

ogy for the front-end runs on the Flash plug-

in, which has a remarkable adoption rate with

users

(http://www.adobe.com/products/player_cens

us/flashplayer/version_penetration.html). It

can thus be assumed that 90% of the users

will already have the possibility to run the

application without the installation of any

additional software.

Taking into consideration these arguments,

the best choice for the front-end is a RIA

running on a browser plugin, which allows

for a full-featured GUI without making ex-

tensive support necessary.

http://www.adobe.com/products/player_census/flashplayer/version_penetration.html
http://www.adobe.com/products/player_census/flashplayer/version_penetration.html

Economy Informatics vol. 12, no. 1/2012 87

3 Backend
There are a series of considerations which

must be taken into account when construct-

ing the architecture of the back-end of the

application.

The first matter which must be taken into ac-

count is that of the interface between the

front-end and the back-end. Interfacing the

two components must be as easy as possible

while promoting flexible design. Flexible

design is represented here by loose coupling

of the two components. By this I understand

that modifications in the front-end must not

influence the back-end and vice versa.

An additional concern is that, while the sys-

tem is designed as a web application, the

possibility of a future mobile application

must be taken into account. For this reason,

the back-end, which contains the actual ap-

plication logic, must remain usable if the

front-end is changed, preferably without any

modification.

This is doubly important since the degree of

homogeneity which one can find in web ap-

plications is not found for mobile applica-

tions. Mobile applications are dependent on

the platform on which they run and device

producers have been known to limit the ac-

cess to certain technologies. As such if the

system is to be used on a wide variety of de-

vices, the front-ends will be radically differ-

ent and be necessarily implemented in differ-

ent technologies.

The solution which grants to most flexibility

is to use web services, since web services can

be accessed by practically any type of front-

end. Web services allow remote access to

objects through specialized protocols. When

using web services, there are two possible

main technological variants, classic web ser-

vices, communicating through SOAP or

REST-ful services [6].

Both SOAP and REST operate by transmit-

ting data over the HTTP protocol, but there

are significant differences in the actual ap-

proach.

In a general sense, REST architectures are

classical client server architectures. Clients

send requests to servers while servers process

those requests and return responses (wikipe-

dia). Requests and responses consist of the

transmission of representations of resources,

where the meaning of a resource is anything

that can be associated an address. The repre-

sentation of a resource is a document reflect-

ing a particular state of a resource, a state

which changes subsequent to client requests.

The original implementation of a REST ap-

proach is the HTTP protocol itself, but the

approach is not limited to HTTP. Indeed, a

REST-ful approach can be applied further up

the protocol stack in order to obtain more

flexible application mechanisms.

While SOAP services are much more clearly

defined, the definition for REST-ful services

is more of a guideline. A REST-ful web ser-

vice is a simple implementation of a web

service using HTTP and built with REST

principles in mind. Because REST-ful ser-

vices are structured very closely to HTTP

itself, a service definition is composed of the

base URI of the service, the internet media

type of the data which is to be transmitted by

the service (also known as a MIME type) and

the set of operations supported by the service

[5].

It must be mentioned here that the operations

supported by the service are subset of HTTP

methods (GET, POST, PUT etc.) as no new

actions (“verbs”) can be defined. In contrast,

SOAP services can define an unlimited num-

ber of actions and are not constrained to the

HTTP methods.

SOAP services allow remote access to ob-

jects through the Simple Object Access Pro-

tocol. While the communication with the re-

mote objects is done through SOAP, the pro-

tocol in itself is not sufficient. An application

accessing a SOAP web service must have

access to the definition of the remote objects.

This definition is contained by a special file

which is written in the WSDL (Web Service

Definition Language) language which is an

extension of XML (as is SOAP itself).

The WSDL definitions for objects are ex-

tremely large and prohibitively hard to read

and maintain. As such, they are usually gen-

erated through specialized tools. However,

the fact that the WSDL must be downloaded

by the client leads us to one of the weakness-

88 Economy Informatics vol. 12, no. 1/2012

es of SOAP which is the fact that a lot of ad-

ditional information is needed in order to use

a remote object. Apart from the overhead

generated by using a WSDL definition the

SOAP envelope itself contains a lot of addi-

tional information. As such, SOAP services

generally transmit a significant amount of

additional data.

The advantage, however, is the use of im-

plementation and flexibility, since the client

does not have to have any prior knowledge of

the implementation of the objects on the

server. Especially since the system involves

using different technologies from different

families on the front-end and the back-end,

this is a significant advantage which justifies

the selection of SOAP services.

In order to implement web services, a dedi-

cated API which is included in Java Enter-

prise edition will be used. As a language, Ja-

va has the advantage of flexibility and porta-

bility, while maintaining significant applica-

tion speed (Java is similar to C++ in speed,

despite running in a virtual machine). Since

much of the language is open source, there

are numerous options for any task. For ex-

ample, while web services can be imple-

mented with the standard Java API, which is

JAX-WS [2], they can also be implemented

with different open source technologies such

as Apache Axis [3].

The second important decision when imple-

menting the back end of the application re-

lates to data representation. While any repre-

sentation of the data will be exposed through

SOAP web services, it is also important to

establish what that data representation will

be.

There are a number of approaches which

could be employed. First of all, JSE (Java

Standard Edition) offers an API for DBMS

agnostic database access. JDBC (Java Data-

Base Connectivity) [1] [7] offers a way to

abstract database connectivity through the

use of JDBC drivers which intermediate

communication with the actual database

server. JDBC is a mature technology with a

high degree of flexibility granted to the im-

plementer. It allows the application to either

abstract much of the communication with the

database or to finely tune it through more

database dependent mechanisms.

However, if implementing an application us-

ing JDBC, there is a lot of “boilerplate” code

which must be included in the application.

This code is difficult to abstract and will af-

fect the clarity of the application logic and

thus the ease with which the application can

be maintained.

As such, JDBC is a good implementation so-

lution only when fine control over database

operations is needed. For all other situations,

it is preferable to employ a database abstrac-

tion layer which allows the application ob-

jects to be written to the database without

any code “clutter”.

The problem, which generates the additional

code, is a fundamental mismatch between the

way relational databases represent data and

the way objectual programming languages do

it. In order to avoid this problem, an ORM

(Object Relational Mapping) API [8] can be

used. Advantages of this approach are multi-

ple, from the added clarity, since the applica-

tion better reflects its model, to the fact that

the way objects are stored in the database is

not configurable and can easily be changed if

the evolution of the application demands it.

In the implementation of the consensus mod-

eration system however, there are two sets of

tasks which have significantly different com-

putational needs. As such, while an approach,

which employs an ORM library and thus al-

lows a better management of the complexity

of the code, is preferable it is not possible to

employ it for all tasks. The core classes of

the application can thus be stored in the data-

base through an ORM, while the recommen-

dation engine will be implemented via classic

JDBC in order to allow for finer control and

thus make the needed optimization possible.

One additional decision is that of the DBMS

on which the system will rely. Since there

will be a significant amount of processing

involving simple, but time consuming, que-

ries a DBMS which handles low complexity

queries quickly is preferable.

Due to the complexity of the architecture of

the system, I will focus on the implementa-

Economy Informatics vol. 12, no. 1/2012 89

tion details for the back-end components

which are presented in the next section.

Hibernate
Most web applications involve the use of a

database and the consensus moderation sys-

tem is no exception. The main entities (pro-

posals, issues etc.) involved in the function-

ing of the system are stored in the database

and access to them must be provided through

the web service.

Since these are core entities, it is preferable

that their model is as clear and maintainable

as possible. This is a problem when employ-

ing a traditional approach to database access.

As stated in the introductory part of this

chapter, there is a fundamental mismatch be-

tween the way object oriented programming

represents real entities and the way they are

stored in relational databases. Relations be-

tween entities are even harder to represent

since there is no correspondent in the rela-

tional model for inheritance and composition.

These relations can be represented through

one-to-one and one-to-many relations which

in turn involve the use of foreign keys in the

database. While this approach accomplishes

the task at hand, it leads to unnecessarily

complex code and increased maintenance

costs.

The solution is to somehow map the fields of

objects to attributes in the relational database,

a task which is accomplished through an

ORM API [14]. In Java, there is significant

standardization through the Java Persistence

API (JPA) [15] which was launched with the

release of EJB 3.0 [9][10].

The most well established persistence API is

Hibernate, which is the industry standard for

ORM. Hibernate is an implementation of the

JPA standard, but offers significant added

functionality, some of which can be em-

ployed while still keeping the application

JPA compliant. This aspect is important be-

cause in the event that replacing the ORM

API is considered necessary, Hibernate can

be replaced with any other JPA compliant

ORM .

While solutions such as Hibernate are not

appropriate for any situation, they represent a

good first choice since alternative approaches

can be used simultaneously. This is especial-

ly important for the consensus moderation

system, since some operations must be done

using traditional JDBC [11].

Object Relational Mapping is a term defining

direct persistence of traditional Java objects,

which are called Plain Old Java Objects. The

term POJO reflects the fact that these are in-

deed objects which do not contain any code

specifying that they are to be stored in the

database. Because of this, such objects can

easily be used in a different application

which does not involve storing them in a da-

tabase. Hibernate is an API which allows

persistence of POJO’s without significant

constraints as to the type of the object which

is to be persisted.

Hibernate allows considerable flexibility in

mapping POJO’s and the relations between

them. Objects can be mapped to one table or

to multiple tables and several POJO’s can be

mapped to a single table. There is also signif-

icant flexibility as to the conventions used to

name database entities since the columns to

which each field can be specified as well as

the table names.

Hibernate supports a series of relations be-

tween objects which cannot be found in the

relational model such as inheritance between

classes.

Although there is some performance over-

head when Hibernate starts up and its session

factory is created and configured, Hibernate

is a fast tool[11][12]. Finally, using Hiber-

nate does not require using any special envi-

ronment such as an application server or

servlet container thus making the application

using it much more flexible to change.

Since Hibernate uses POJO’s, there is very

little dependence between the objects them-

selves and the persistence layer. As such,

persistence could be taken out of the applica-

tion without affecting the application logic.

While this scenario is far-fetched, this leads

to the fact that if optimization that is not pos-

sible through Hibernate is needed, it can easi-

ly be replaced with a different solution.

As such, there is very little that constrains the

design of the application when using Hiber-

nate, which remains a first option for almost

90 Economy Informatics vol. 12, no. 1/2012

any application which requires that objects

be saved in a database.

In order to communicate with the database,

Hibernate employs a session factory, which

is a heavyweight object (there should be only

one session factory per application) from

which the application can get database ses-

sions. At a first glance, this might seem simi-

lar to getting JDBC connections from a

DriverManager, but sessions have signifi-

cantly more functionality than connections.

For example, sessions support transactions

out of the box and a session factory can easi-

ly be configured to support connection pool-

ing.

Since the session factory involves significant

processing, it is usually separated from the

rest of the application and wrapped inside a

singleton object [13], which is an object con-

structed on a design pattern which guarantees

that only one instance of the object can be

obtained. The code below shows a Hiber-

nateUtil class which plays this particular role,

providing the same session factory to any

object that might need it:

package util;

import org.hibernate.cfg.AnnotationConfiguration;

import org.hibernate.SessionFactory;

public class HibernateUtil {

 private static final SessionFactory sessionFactory;

 static {

 try {

 sessionFactory = new AnnotationConfiguration().

configure().buildSessionFactory();

 } catch (Throwable ex) {/*exception treating code*/}

 }

 public static SessionFactory getSessionFactory() {

 return sessionFactory;

 }

}

What is not reflected by the code above is the

fact that any session factory is constructed

based on a configuration. This configuration

is located by convention in an XML file

called hibernate.cfg.xml located in the de-

fault package. This is, of course, a conven-

tion and as any convention, it can be overrid-

den. The file contains session factory tag

which specifies connection data (connection

string, username, password) as well as what

type of database is to be used and which

JDBC driver. Since these settings are located

in an external configuration file, they can

easily be changed without modifying the

code. Apart from these settings, the class also

contains mapping tags for all the classes

which must be persisted:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD

3.0//EN" "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <session-factory>

 <property name="hibernate.dialect">

 org.hibernate.dialect.MySQLDialect</property>

 <property name="hibernate.connection.driver_class">

 com.mysql.jdbc.Driver</property>

 <property name="hibernate.connection.url">

 jdbc:mysql://localhost:3306/printing_house2</property>

 <property name="hibernate.connection.username">root</property>

 <property name="hibernate.connection.password">

 welcome123</property>

 <property name="hibernate.query.factory_class">

 org.hibernate.hql.classic.ClassicQueryTranslatorFactory

 </property>

 <mapping class="entity.Person"/>

 </session-factory>

</hibernate-configuration>

Economy Informatics vol. 12, no. 1/2012 91

ORM with Hibernate can be accomplished in

two ways. The principle of ORM is that some

kind of mapping must exist between the ob-

jects which are to be stored and the structure

of the database.

There are two possible approaches in accom-

plishing this with Hibernate, using XML

mapping files and using annotations.

A third option is the use of a convention over

configuration approaches, which consists in

assuming table and attribute names from the

English language. For example, a table stor-

ing objects of type User would be called Us-

ers with this convention (the table storing an

entity is named as the plural of that particular

entity) being used as long as it is not overrid-

den. Hibernate has significant support for

convention over configuration, especially

when using annotations, but mapped objects

have to contain a minimum amount of infor-

mation about the way they are to be stored.

The first approach is to use mapping via

XML files. This carries the advantage of hav-

ing a highly configurable application since

the mappings can be modified without hav-

ing to recompile the application. However,

the XML files can become extremely com-

plex and, since they are separated from the

objects they refer to, lead to a significant dif-

ficulty of keeping track of changes in the ap-

plication.

The class which is mapped to a database ta-

ble is an object without any additional infor-

mation. An example of such a class can be

seen in the code below:

package entity;

public class Employee implements

java.io.Serializable {

 private int idemployee;

 private String name;

 public Employee() {

 }

 public Employee(int idemployees) {

 this.idemployee = idemployees;

 }

 public Employee(int idemployees,

String name) {

 this.idemployee = idemployees;

 this.name = name;

 }

 //omitted: setters and getters

}

In order to create the mappings, an external

XML file has to be created. By convention,

this file is called Employee.hbm.xml. The

file specifies a mapping tag which contains a

class tag. The class tag specifies which data-

base is to be used (catalog), which object is

to be mapped (name) and what name the ta-

ble in which the objects are persisted should

have (table). Inside the tag, the various fields

of the object are mapped to table columns,

with the possibility to specify restrictions on

the field. Special attention should be given to

the id column, in this case idemployees. This

is one of the few restrictions hibernate im-

poses, that all mapped classes have the corre-

spondent of a primary key. This is because

while the objects can be accessed while in

memory via a hash key, this key is lost

through persistence, making it impossible to

differentiate objects with the same content.

The primary key is generated via one of the

strategies the DBMS supports:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>

 <class catalog="hibtests" name="entity.Employee" table="employee">

 <id name="idemployee" type="int">

 <column name="idemployees"/>

 <generator class="assigned"/>

 </id>

 <property name="name" type="string">

 <column length="45" name="name"/>

 </property>

 </class>

</hibernate-mapping>

92 Economy Informatics vol. 12, no. 1/2012

The second approach, and the one which is

preferred in the implementation of the con-

sensus moderation system, is to use annota-

tions. Annotations are additional information

inside a class which have no significance to

the compiler, but are to be used by other

tools. Using annotations, the mappings are no

longer configurable from external files, but

the connection between the object fields and

their corresponding table columns is much

clearer. Additionally, when using annota-

tions, much less information has to be speci-

fied, since the application can rely heavily on

conventions. As such, column names no

longer need to be specified and will be ex-

trapolated from the names of the attributes.

An annotated proponent class is presented

below. Since conventions are used, there are

very few things that must be added explicitly

in the annotations. The @Entity annotation

tells hibernate that this is to be a persistent

class. The @Id annotations specifies which is

the primary key while the @GeneratedValue

annotation specifies that the primary key is to

be generated with whatever default mecha-

nism the DBMS uses.

Convention ensures that the table name is

easily determined (Proponent) as well as the

name of the attributes. The primary key will

be idproponent, while the fields will maintain

their names (username and password):

package entities;

import java.io.Serializable;

import javax.persistence.*;

@Entity

public class Proponent implements

Serializable {

 private String username;

 private String password;

 @Id

 @GeneratedValue

 private Long id;

 public Proponent() {

 }

 //ommitted constructor, setters and

getters for fields

}

One of the most important features Hibernate

offers is the ability to reflect connections be-

tween objects in a relational database. As I

said before, there is a fundamental mismatch

in the way that the objectual model and the

relational model see entities. Connections

between objects which seem trivial lead nev-

ertheless to complicated persistence code.

In the code below we have a composition

relation between Proposal and Issue, in that a

proposal contains a list of issues. It is neces-

sary to save proposals and issues in the data-

base without allowing any anomalies, such as

“orphan” issues. Also, each proposal is asso-

ciated a proponent. This is done by specify-

ing the fact that there should be a one to one

relation between Proponent and Proposal and

a one to many relations between Proposal

and Issue.

At the database level, one to many relations

are implemented by default via linking ta-

bles, which are tables which map primary

keys in a table to primary keys in another ta-

ble. One to one relations are specified via the

@OneToOne annotation. The attribute cas-

cade specifies in what manner should modi-

fications be propagated. If Cas-

cadeType.ALL is specified, any modification

to a proposal is also propagated to the respec-

tive proponent (if, for example, a proposal is

saved, the respective proponent is also

saved).

One to many relations are specified with the

@OneToMany annotation. Aside from speci-

fying the cascade attribute, it is also neces-

sary to specify how elements on the “many”

part of the relation are to be retrieved. By

default, Hibernate has “lazy” fetching, which

means that if a proposal is read from the da-

tabase, the issues will not be read unless ex-

pressly specified. By setting fetch type to ea-

ger this behaviour is changed and the issues

are loaded and available as soon as their re-

spective proposal has been loaded:

package entities;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.List;

import javax.persistence.*;

@Entity

public class Proposal implements Serializable {

Economy Informatics vol. 12, no. 1/2012 93

 @OneToOne(cascade= CascadeType.ALL)

 private Proponent proponent;

 @OneToMany(cascade = CascadeType.ALL, fetch=FetchType.EAGER)

 private List<Issue> issues = new ArrayList<Issue>();

 private String content;

 private String title;

 @Id

 @GeneratedValue

 private Long id;

 public Proposal() {

 }

 public Proposal(Proponent proponent, String title, String content){

 this.proponent = proponent;

 this.content = content;

 this.title = title;

 }

 public void addIssue(Issue issue){

 issues.add(issue);

 }

 public List<Issue> getIssues() {

 return issues;

 }

 //omitted: setters and getters for remaining fields

}

Using Hibernate it is possible to reflect one

to one and one to many relations which are

characteristic for the relational model into the

object model of the application.

JAX WS

Apart from a way of persisting objects in the

database there is another important matter

which the back-end must cover. Since the

objects are to be accessed remotely from a

Flex interface, a technology must be em-

ployed to provide technology agnostic re-

mote access.

As discussed above, web services represent a

way of accessing remote object which pre-

sents the added advantage of maintaining a

clear communication standard. The main

concepts relating to web services and their

implementation are presented below.

Since web services are a way of accessing

objects remotely, web service definitions are

represented in Java as classes. JAX-WS

adopts a streamlined approach to defining

web services in the sense that web services

are simple classes with few other restrictions.

The web service class itself does not have to

do anything special and the web service spe-

cific parameters are added through annota-

tion. This approach guarantees that the class

can be used in a different context, such as a

desktop application running outside a servlet

container.

Specifying the fact that the class is to be ex-

posed as a web service through SOAP is

done with a simple @WebService annotation

with the minimal requirement of specifying

the service name. The service name is needed

in order to construct the URL at which the

service definition can be found.

For example, the (incomplete) web service

below could be found at

http://localhost:8084/consensusWeb/consens

usWeb.

This URL is needed in order to access the

service’s methods. The service definition,

which is an XML file written in the WSDL

language can be found at

http://localhost:8084/consensusWeb/consens

usWeb?wsdl.

The basic definition of a web service can be

seen in the code below; the service does not

need to specify anything other than the anno-

tations and does not have to implement any

interfaces:

package services;

import javax.jws.WebService;

import javax.jws.WebMethod;

import javax.jws.WebParam;

@WebService(serviceName =

"consensusWeb")

public class consensusWeb {/*web service

code*/}

http://localhost:8084/consensusWeb/consensusWeb
http://localhost:8084/consensusWeb/consensusWeb
http://localhost:8084/consensusWeb/consensusWeb?wsdl
http://localhost:8084/consensusWeb/consensusWeb?wsdl

94 Economy Informatics vol. 12, no. 1/2012

In order for the web service to specify actual

behaviour, web methods have to be added to

the definition of the service

Although not obvious from the code (since

the service does not implement Serializable)

the methods of the service class should return

serializable types and receive serializable pa-

rameters. This condition applies to any meth-

od exposed through the public interface of

the class (web methods have to be public).

This is important since the result of the exe-

cution of the methods have to be used re-

motely. The types must be reconstructed

when received by the method invoker which

would not be possible if they contained re-

sources which were fundamentally local

(such as database connections or file de-

scriptors).

There are two main types of methods which

are employed by the data access service and

examples for both will be presented below.

Both types of methods employ Hibernate in

order to attain access to the data.

The first method which is necessary is a

method which adds an entity to the database.

Such a method is addSolution which adds a

Solution entity to the database. A Solution

object is a POJO annotated for Hibernate

persistence as seen in the code below. Of

note is the fact that a Solution implements a

custom comparator which is involved in the

detection of compromises:

package entities;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.List;

import javax.persistence.*;

@Entity

public class Solution implements Serializable, Comparable<Solution> {

 @OneToOne(cascade = CascadeType.ALL)

 private Proponent proponent;

 private String content;

 @OneToMany(cascade = CascadeType.ALL)

 private List<Endorsement> endorsements = new ArrayList<Endorsement>();

 @OneToMany(cascade = CascadeType.ALL)

 private List<Comment> comments = new ArrayList<Comment>();

 @Id

 @GeneratedValue

 private Long id;

 //omitted: contructor, setters and getters for the fields

 @Override

 public int compareTo(Solution s) {

 if(endorsements.containsAll(s.endorsements)) return 1;

 if(s.endorsements.containsAll(endorsements)) return -1;

 return 0;

 }

}

Solutions are, however, contained by issues

so a solution will be added to the correspond-

ing issue. The relevant parts of the definition

of the issue are presented below. An issue

contains a list of solutions, which are to be

cascaded. By setting CascadeType to ALL

we ensure that when an issue is modified,

such as by adding a solution to it, if the issue

is saved all operations cascade to the depend-

ent entities (the solution is also saved).

The addSolution method itself is annotated

with JAX-WS annotations. The

@WebMethod annotation specifies that the

method must be exposed by the web service.

All parameters to the method are annotated

with @WebParam and must be serializable

types. In order to add a Solution to the data-

base, the method receives as parameters the

proponent, issue and the actual content of the

solution.

Both the Proponent and the Issue objects

must be loaded in order to construct a Solu-

tion object (since it contains reference to its

proponent and is referenced by an issue). The

load method is not generic [13] so it returns

an Object type object which must be cast to

the respective type.

Economy Informatics vol. 12, no. 1/2012 95

After obtaining a Proponent and an Issue, a

Solution object can be created based on the

proponent and the content. The solution is

the added to the issue to which it refers.

After this step, the issue is saved to the data-

base. Since the issue contains a list of solu-

tions which is set to be cascaded, it automati-

cally saves the solution to the database. After

saving the issue all that is left is to commit

the changes and close the session:

@WebMethod(operationName = "addSolution")

public String addSolution(@WebParam(name = "issue") Long issue,

 @WebParam(name = "proponent") Long proponent, @WebParam(name =

 "content") String content) {

 Session session = HibernateUtil.getSessionFactory().openSession();

 try {

 session.beginTransaction();

 Issue i = (Issue) session.load(Issue.class, issue);

 Proponent prop = (Proponent) session.load(Proponent.class, proponent);

 Solution s = new Solution(prop, content);

 i.addSolution(s);

 session.save(i);

 session.getTransaction().commit();

 return "done";

 } catch (HibernateException he) {/*handle exception*/}

 finally {session.close();}

 return "done";

}

The second important type of method in-

volved in the construction of the data service

is a method which returns a list of entities

based on some sort of criteria, such as return-

ing all solutions proposed for a particular is-

sue. This is accomplished via the listSolu-

tionsByIssue web method which is presented

below.

The issues are returned remotely as a generic

list of List<Solution> type. Since the Solu-

tion type is serializable, the generic list is al-

so serializable.

The method is annotated with the

@WebMethod annotation and receives the

issue as a parameter annotated with the

@WebParam annotation.

After the initial steps of obtaining a session

and opening a transaction, a query must be

created via the createQuery method of the

Session class. Queries created with the cre-

ateQuery method are constructed with based

on a character string written in the Hibernate

Query Language (HQL). The Session class

also supports traditional SQL queries defined

with the method createSqlQuery, but using

HQL queries is preferable due to the fact that

they work with the actual entities and thus

maintain a higher level of clarity.

Since we need to select all solutions pro-

posed for an issue, we will select the Issue

objects with the specified id. From the issue,

using the special operator elements, a list of

the solutions can be obtained [16].

HQL queries are parametrizable through the

use of placeholders such as “:issue” [13][16]

in the example below. The actual value of the

parameter is then set via a setType method,

in this case setLong. After setting the actual

parameters, the query can be executed via the

list method of the Query class. This method

returns a List object which can then be re-

turned by the web method (there are both ge-

neric and non-generic versions of list, but in

the example the generic version is used):

@WebMethod(operationName = "listSolutionsByIssue")

public List<Solution> listSolutionsByIssue(@WebParam(name = "issue") Long issue) {

 Session session = HibernateUtil.getSessionFactory().openSession();

 List<Solution> list = new ArrayList<Solution>();

 try {

 session.beginTransaction();

 Query q = session.createQuery("select elements(i.solutions)

 from Issue i where i.id = :issue");

 q.setLong("issue", issue);

96 Economy Informatics vol. 12, no. 1/2012

 list = q.list();

 session.getTransaction().commit();

 } catch (HibernateException he) {/*handle exception*/

 } finally {session.close();}

 return list;

 }

While the service defines accessor methods

for all entities, their definition is similar to

the ones for solutions. A slightly simplified

version of the methods is defined if the re-

spective entity does not depend on any other

entity.

Conclusions
A consensus moderation system is best im-

plemented as a web application in order to

ensure easy access to all participants without

requiring additional infrastructure. Also,

flexible design is preferable in order to en-

sure high maintainability of the system.

Constructing a consensus moderation system

capable of taking into account previous user

behavior poses additional challenges, as rec-

ommendation related operations are compu-

tationally intensive. As such, components

involved in the recommendation process

must be designed with efficiency in mind,

even if some of the design clarity is lost (with

the effect of lower maintainability).

References

[1] M. Fisher, J. Ellis and J. Bruce, JDBC

API Tutorial and Reference (3rd Edi-

tion). Prentice Hall, 2003.

[2] M. Kalin, Java Web Services: Up and

Running. O'Reilly Media, 2009

[3] T. Kent, Developing Web Services with

Apache Axis. LULU , 2006

[4] A. Toma, Consensus Moderation Sys-

tem, Informatica Economica,2011

[5] http://en.wikipedia.org/wiki/Representati

onal_state_transfer

[6] C. Pautasso, O. Zimmermann and F.

Leymann, RESTful Web Services vs.

Big Web Services: Making the Right Ar-

chitectural Decision. (Beijing 2008).

[7] P. Mahmoud. JDBC Recipes: A Prob-

lem-Solution Approach, Apress, 2005.

[8] T. Halpin and T. Morgan, Information

Modeling and Relational Databases, Se-

cond Edition, Morgan Kaufmann, 2008.

[9] R. Monson-Haefel and B. Burke, Enter-

prise JavaBeans 3.0 (5th Edition),

O'Reilly Media, 2006.

[10] A. L. Rubinger and B. Burke, Enterprise

JavaBeans 3.1, O'Reilly Media, 2010.

[11] J. Linwood and D. Minter, Beginning

Hibernate, Apress 2010.

[12] S. M. Thampi, Performance Comparison

of Persistence Frameworks, ArXiv, 2007.

[13] E. Gamma, R. Helm, R. Johnson and J.

Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Ad-

dison-Wesley Professional, 1994.

[14] K. Roebuck, Object-relational mapping

(Orm): High-impact Strategies - What

You Need to Know: Definitions, Adop-

tions, Impact, Benefits, Maturity, Ven-

dors, Tebbo , 2011.

[15] M. Keith and M. Schincariol, Pro JPA 2:

Mastering the Java(TM) Persistence API

(Expert's Voice in Java Technology),

Apress, 2009.

[16] G. Mak, Hibernate Recipes: A Problem-

Solution Approach, Apress, 2010.

Andrei TOMA has a background in both computer science and law and is

interested in an interdisciplinary approach to IT Law related issues. He has

graduated the Faculty of Cybernetics of the Academy of Economic Studies in

Bucharest and the Faculty of Law of the University of Bucharest. He holds a

Ph.D. in Economic Cybernetics and Statistics at the Academy of Economic

Studies. His current fields of interest include IT Law related issues, as well as

flexible enterprise application architectures.

http://revistaie.ase.ro/content/59/13%20-%20Toma.pdf
http://revistaie.ase.ro/content/59/13%20-%20Toma.pdf
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

