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ntroduction 
Trading activity in a brokerage firm implies, 

from the informational flow point of view, col-
lecting the orders (for buying or/and selling 
various financial products) from firm’s clients 
(designated, in the last instance, by their bro-
kerage accounts opened at the brokerage firm 
- each client may have multiple brokerage ac-
counts open with the brokerage firm) and 
placing these orders on a previously specified 
stock exchange. After the trade is made (the 
orders are executed, inside the stock ex-
change’s matching engine), the executions are 
captured by the brokerage firm’s trading sys-
tem, and the executed quantities from each fi-
nancial product (stocks, for instance) have to 
be allocated fairly on each client’s accounts 
based on the ordered quantities for each ac-
count, specified previously by the client. In-
side the trading system of the brokerage firm, 
the client’s ordered quantities for each of it’s 
accounts, are aggregated. Then trenches – or 
blocks – from the cumulated quantity are ac-
tually sent to the stock exchange. These por-
tions, which have to be multiple of the lot size 
(the minimum number of the financial product 
units that is allowed to be traded on a particu-
lar stock exchange, and which is specified by 
the stock exchange’s regulations for each 
product, based on it’s price - nili ,1, = ) of 
the concerned financial product, are sent to 
the stock exchange through the brokerage 
firm’s trading system, and they may be fully 
executed, partially executed or not exe-
cuted at all. When these portions are exe-
cuted, they may be executed at different 

prices, that is. Therefore, the total, aggregated 
quantity from a certain financial instrument, 
order by a certain client, may not be entirely 
executed (the client’s orders not entirely satis-
fied) or executed in portions at different 
prices.  
Formalizing the problem, we have (given) the 
requested (ordered) client’s quantities, and for 
each product kP , the actual executed quanti-
ties at their respective prices – the input data 
of the problem is described by the following 
bi-dimensional arrays. 

),1(,,, 21 nnCCC n =K  are the client’s ac-
counts. 
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If the entire ordered quantity, from a certain 
product-client, it is executed (fully or par-
tially) at unique price then, there is not an al-
location problem. The executed quantity will 
be allocated on the client’s accounts propor-
tionally to the quantity ordered by the client 
for each of its accounts. If there is a price 
breakdown, i.e. the total ordered quantity 
from a certain product is executed (fully or 
partially) at multiple prices, then we have an 
integer allocation problem, which implies op-
timization. In this case, the final goal is to 
achieve average prices for each of the client’s 
account as close as possible to each other, 
with the respect to the original ordered quanti-
ties for each account. 
We have, therefore, the following constraints: 
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Where r is the number of received executions 
for a certain product, m is the number of dis-
tinct financial products, and n is the number of 
the client’s accounts. The quantities 

),1;,1;,1;,1(, rhmknjmieq hkji ==== are 

integers and they must be multiple of the cor-
responding product’s lot size ( nili ,1, = , 
which are also integers). 
 
Content 
The proposed algorithms require two phases: 
the first one provides an initial basis solution, 
which will be improved, iteratively, in the sec-
ond phase. 
The client’s accounts receive priorities func-
tion of the ordered quantity – a bigger or-
dered quantity implies a higher priority of sat-
isfying the request, in the case of some pro-
rata allocation approach, but for small ac-
counts priority strategy, as the name itself 
suggests, a smaller ordered quantity implies a 
higher priority. As an additional note, each cli-
ent’s account may have assigned an explicit 
priority, which kicks in when two or several 
accounts have assigned the same ordered 
quantity for a particular financial product – in 

order to assure a rigorous manner of the re-
quest procesings. 
 

 C1 C2 .    .    . Cn 
Account 
priority  

x1 x2 .    .    . xn 

 
The problem consists, in fact, in several local 
problems that may occur for each product-
client pair, which may have a price break-
down. The algorithms are to solve each indi-
vidual problem, and we shall focus hence on 
the allocation of executed quantities, at differ-
ent prices, for a single financial product or-
dered by a certain client. Preparations - the 
algorithms require some arrangements of 
the input data  which serve for simplifying 
the processing: 
• sorting the accounts in an ascending 
order (descending order, for a certain pro-
rata strategy), function of the ordered quan-
tity and the explicitly assigned priority (where 
it is necessary); 
•  computing the matrix of the coeffi-
cients associated to the ordered quantities, as 
follows (requested by the pro-rata strategy 
basis allocation): 
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• sorting the executed prices per prod-
uct in an ascending order, starting with the 
closest executed price to the general weighted 
average price, for each product, and going 
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toward the remoter executed prices from the 
average.  
 
First phase – provides an initial solution – 
rough allocation. There are two strategies 
for obtaining an initial, basis solution.  
Pro-rata strategy - it consists in the following 
steps and provides itself an acceptable solu-
tion in many concrete cases: 
1. allocate the quantity executed at the clos-
est price to the weighted average price, based 
on the coefficients determined previously for 
each product (they play the role of an opti-
mality indicator, in the quest for the optimal 
solution), – pro-rata allocation, with the allo-
cated quantity rounded to the nearest lot size; 
2. there might be a difference between the 
quantity (the number of shares) executed at 
that price and the actual allocated quantity, 
caused by rounding errors; we call this differ-
ence adjustment, and we’ll allocate the ad-
justment to the account with the biggest or-
dered quantity (with the respect to the original 
ordered quantity – to not be exceeded – and 
the explicitly assigned priority, where it is nec-
essary); note that the adjustment may be dis-
tributed to several accounts, respecting the 
afore mentioned condition; after the adjust-
ment is allocated the total number of ordered 
product’s units should be equal to the number 
of units executed for that product, at that par-
ticular  price; 
3. for each account is calculated the residual 
value, as the number of product’s units re-
sulted by subtracting the number of already al-
located units from the number of ordered 
units; the next price is allocated using this re-
sidual as criteria for updating the accounts’ 
priorities; 
4. repeat the previous steps to the remotest 
(from the average) executed price. 
It has been proven empirically that this pro-
rata allocation can provide itself an accept-
able solution in many cases and, eventually, a 
very good initial basis solution for the second 
phase of the algorithm. 

Small accounts priority strategy - it 
doesn’t, necessarily provide itself an accept-
able solution because the accounts with a big-
ger ordered quantity might be under satisfied, 
but the allocation has a great potential of being 
improved in the second phase of the algo-
rithm; it consists in the following steps: 
1. try to allocate the entire quantity executed 
at the closest price to the weighted average 
price, to the account (not yet satisfied) which 
has the smallest ordered quantity; 
2. there might be a difference between the 
quantity (the number of shares) executed at 
that price and the actual ordered quantity fro 
that given account; we call this difference ad-
justment, and we’ll allocate the adjustment to 
the next account (from the ascending sorted 
list of the accounts  - ordered quantities - with 
the respect to the original ordered quantity – 
to not be exceeded – and the explicitly as-
signed priority, where it is necessary); note 
that the adjustment may be distributed to 
several accounts, respecting the afore men-
tioned condition, for each account we try to 
satisfy the entire ordered quantity at the clos-
est possible price to the average;  
3. repeat the previous steps to the remotest 
(from the average) executed price. 
As we specified, this strategy for generating 
the initial basis solution, might not satisfy inte-
grally the ordered quantity for the big ac-
counts (especially when the executed quantity 
differs significantly from the originally ordered 
quantity), but this issue is resolved by the sec-
ond phase of the algorithm, and this allocation 
turns out to be a very efficient initial basis so-
lution for the optimization phase. 
 
Second phase – concerns, in fact, the class 
of the heuristic algorithms that we have been 
intending to present. They follow, essentially, 
a greedy strategy. The algorithms provide an 
improvement of the solution at each iteration 
[1]. There is defined an objective function, 
which serves as criteria for continuing, respec-
tively stopping, the iterative process. The 
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manner in which the objective function is de-
fined, assures that with each iteration it is 
made a step forward toward a better alloca-
tion, although the optimality of the final solu-
tion is not necessarily assured [2, 3]. 
A. The objective function based on the 
total allocated quantity. 
For ease, let’s consider n the number of ac-
counts, m the number of distinct prices at 
which the order for the product kP  was exe-
cuted, and the allocated quantities 
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The steps of the algorithm are as followings: 
1. for each product we have computed (at 
the time of the preparations), based on the 
ordered quantities, the coefficients 
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which are going to be use as reference. After 
the rough allocation is completed we are able 
to calculate 
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 as the current coeffi-

cients at this stage; 

2. we calculate the lag between the current 
values and the references, 
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jective function is given by 
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3. we select the )min( j∆  and )max( j∆ , 

determining in this way the column which has 
the highest deficit and the column which has 
the highest surplus, respectively; a quantity, 
equivalent to a lot size, is transferred from the 
column with highest surplus to the column with 
the highest deficit; the row, respectively the 
price at which this switch is accomplished, is 
determined based on the most important im-
pact [2, 3, 4] that the swap may produce at 
each iteration of the algorithm (greedy strat-
egy’s essence), considering at each attempt 
the availability of the necessary quantity that 
has to be transferred; if, at this step, we are 
not able to find two different columns for sat-
isfying the min-max condition, then the algo-
rithm stops here, and the current solution is 
considered the best that we can reach; 
4. repeat from step 1, using as current solu-
tion the allocation resulted after the quantity 
equivalent to a lot size was switched between 
the two chosen columns; we obtain a new 
value for the objective function objf ′ . The al-

gorithm continues until the stop condition is 
reached: 10, <<<′− εεobjobj ff . 

It has to be specified the fact that we record 
the pairs of the columns between which a 
transfer has occurred, the row (associated to 
the executed price) and the direction of the 
transfer, in order to not go forward and 
backward inside the space of the solutions, 
and for avoiding the cyclical traps. This ap-
proach is consistent with the greedy method’s 
general nature, and secures the reach of an 
optimal solution, or a solution located in the 
very vicinity to an optimal one. 
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For the next two algorithms, the basic idea is 
retained. The way in which we define the ob-
jective function determines essentially the final 
solution, function of which criteria is more 
relevant for the real purpose (context). 
B. The objective function based on the 
average price. 
This algorithm puts a greater emphasis on 
having an average price, for each account, as 
close as possible to the general average price: 
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The following steps describe the essence of 
the algorithm: 
1. for each account we calculate the average 

price at this stage: 
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2. calculate the deltas as 
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3. take advantage from using the same min-
max technique that we have used in the pre-
vious algorithm, for detecting the pair of col-
umns which will be involved in a swap of a lot 
size; the same stop condition for this step; 
4. repeat from step 1 using as current solu-
tion the allocation resulted after the quantity 
equivalent to a lot size was switched between 
the two chosen columns; we obtain a new 
value for the objective function objf ′ . The al-

gorithm continues until the stop condition is 
reached: 10, <<<′− εεobjobj ff . 

C. The objective function based on the 
total value. 
This variant of the algorithm combines the 
previous ones, offering the best balance be-
tween the fairly allocated quantities (based on 
the orders), and the desired average price for 

each client account as close as possible to the 
general average price p . 
1. At the first step we calculate the values al-
located on client accounts after the rough al-
location is completed, using the average price 
for each account determined as in the previ-
ously presented algorithm: 
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2. calculate the deltas as 
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 being the absolute 

value of j∆ ; the sj are the initial, referential 

coefficients, used in the first presented algo-
rithm; 
3. use the same min-max strategy for de-
termining the two columns which will be in-
volved in the swap, with the same stop condi-
tion; 
4. repeat, similarly from step 1; a new value 
for the objective function is obtained - objf ′ . 

The algorithm continues until the stop condi-
tion is reached: 10, <<<′− εεobjobj ff . 

 
The last algorithm provides better, overall, so-
lutions. Function of the concrete demands, the 
first two algorithms may be more suitable for 
certain cases. 
The algorithms are designed to solve the allo-
cation problem for both program trading 
and single stock trading. 
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