
Economy Informatics, no. 1/2001 44

Upon an Integer Allocation Problem

Claudiu VINTE
Goldman Sachs Ltd. Tokyo, Japan

Abstract: A class of heuristic algorithms for trading execution allocations on investors’ ac-
counts.
Keywords: allocation, integer, alghoritms, stock exchange.

ntroduction
Trading activity in a brokerage firm implies,

from the informational flow point of view, col-
lecting the orders (for buying or/and selling
various financial products) from firm’s clients
(designated, in the last instance, by their bro-
kerage accounts opened at the brokerage firm
- each client may have multiple brokerage ac-
counts open with the brokerage firm) and
placing these orders on a previously specified
stock exchange. After the trade is made (the
orders are executed, inside the stock ex-
change’s matching engine), the executions are
captured by the brokerage firm’s trading sys-
tem, and the executed quantities from each fi-
nancial product (stocks, for instance) have to
be allocated fairly on each client’s accounts
based on the ordered quantities for each ac-
count, specified previously by the client. In-
side the trading system of the brokerage firm,
the client’s ordered quantities for each of it’s
accounts, are aggregated. Then trenches – or
blocks – from the cumulated quantity are ac-
tually sent to the stock exchange. These por-
tions, which have to be multiple of the lot size
(the minimum number of the financial product
units that is allowed to be traded on a particu-
lar stock exchange, and which is specified by
the stock exchange’s regulations for each
product, based on it’s price - nili ,1, =) of
the concerned financial product, are sent to
the stock exchange through the brokerage
firm’s trading system, and they may be fully
executed, partially executed or not exe-
cuted at all. When these portions are exe-
cuted, they may be executed at different

prices, that is. Therefore, the total, aggregated
quantity from a certain financial instrument,
order by a certain client, may not be entirely
executed (the client’s orders not entirely satis-
fied) or executed in portions at different
prices.
Formalizing the problem, we have (given) the
requested (ordered) client’s quantities, and for
each product kP , the actual executed quanti-
ties at their respective prices – the input data
of the problem is described by the following
bi-dimensional arrays.

),1(,,, 21 nnCCC n =K are the client’s ac-
counts.

 Executed
Quantity

Price

Pk ek1 pk1

Pk ek2 pk2

.
.
.

.
.
.

.
.
.

Pk ekr pkr

 C1 C2 . . . Cn
P1 q11 Q12 . . . q1n l1 Q1

P2 q21 Q22 . . . q2n l2 Q2

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Pm qm1 qm2 . . . qmn lm Qm

I

Economy Informatics, no. 1/2001 45

If the entire ordered quantity, from a certain
product-client, it is executed (fully or par-
tially) at unique price then, there is not an al-
location problem. The executed quantity will
be allocated on the client’s accounts propor-
tionally to the quantity ordered by the client
for each of its accounts. If there is a price
breakdown, i.e. the total ordered quantity
from a certain product is executed (fully or
partially) at multiple prices, then we have an
integer allocation problem, which implies op-
timization. In this case, the final goal is to
achieve average prices for each of the client’s
account as close as possible to each other,
with the respect to the original ordered quanti-
ties for each account.
We have, therefore, the following constraints:

),1(
11

mkqQe
n

j
jik

r

h
hk ==≤ ∑∑

==

.

Where r is the number of received executions
for a certain product, m is the number of dis-
tinct financial products, and n is the number of
the client’s accounts. The quantities

),1;,1;,1;,1(, rhmknjmieq hkji ==== are

integers and they must be multiple of the cor-
responding product’s lot size (nili ,1, = ,
which are also integers).

Content
The proposed algorithms require two phases:
the first one provides an initial basis solution,
which will be improved, iteratively, in the sec-
ond phase.
The client’s accounts receive priorities func-
tion of the ordered quantity – a bigger or-
dered quantity implies a higher priority of sat-
isfying the request, in the case of some pro-
rata allocation approach, but for small ac-
counts priority strategy, as the name itself
suggests, a smaller ordered quantity implies a
higher priority. As an additional note, each cli-
ent’s account may have assigned an explicit
priority, which kicks in when two or several
accounts have assigned the same ordered
quantity for a particular financial product – in

order to assure a rigorous manner of the re-
quest procesings.

 C1 C2 . . . Cn
Account
priority

x1 x2 . . . xn

The problem consists, in fact, in several local
problems that may occur for each product-
client pair, which may have a price break-
down. The algorithms are to solve each indi-
vidual problem, and we shall focus hence on
the allocation of executed quantities, at differ-
ent prices, for a single financial product or-
dered by a certain client. Preparations - the
algorithms require some arrangements of
the input data which serve for simplifying
the processing:
• sorting the accounts in an ascending
order (descending order, for a certain pro-
rata strategy), function of the ordered quan-
tity and the explicitly assigned priority (where
it is necessary);
• computing the matrix of the coeffi-
cients associated to the ordered quantities, as
follows (requested by the pro-rata strategy
basis allocation):

 C1 C2 . . . Cn
P1 s11 s12 . . . s1n

P2 s21 s22 . . . s2n

.
.
.

.
.
.

.
.
.

.
.
.

Pm sm1 sm2 . . . smn

mi
Q

q

q

q
s

i

ji

n

j
ji

ji
ji ,1;

1

===

∑
=

• sorting the executed prices per prod-
uct in an ascending order, starting with the
closest executed price to the general weighted
average price, for each product, and going

Economy Informatics, no. 1/2001 46

toward the remoter executed prices from the
average.

First phase – provides an initial solution –
rough allocation. There are two strategies
for obtaining an initial, basis solution.
Pro-rata strategy - it consists in the following
steps and provides itself an acceptable solu-
tion in many concrete cases:
1. allocate the quantity executed at the clos-
est price to the weighted average price, based
on the coefficients determined previously for
each product (they play the role of an opti-
mality indicator, in the quest for the optimal
solution), – pro-rata allocation, with the allo-
cated quantity rounded to the nearest lot size;
2. there might be a difference between the
quantity (the number of shares) executed at
that price and the actual allocated quantity,
caused by rounding errors; we call this differ-
ence adjustment, and we’ll allocate the ad-
justment to the account with the biggest or-
dered quantity (with the respect to the original
ordered quantity – to not be exceeded – and
the explicitly assigned priority, where it is nec-
essary); note that the adjustment may be dis-
tributed to several accounts, respecting the
afore mentioned condition; after the adjust-
ment is allocated the total number of ordered
product’s units should be equal to the number
of units executed for that product, at that par-
ticular price;
3. for each account is calculated the residual
value, as the number of product’s units re-
sulted by subtracting the number of already al-
located units from the number of ordered
units; the next price is allocated using this re-
sidual as criteria for updating the accounts’
priorities;
4. repeat the previous steps to the remotest
(from the average) executed price.
It has been proven empirically that this pro-
rata allocation can provide itself an accept-
able solution in many cases and, eventually, a
very good initial basis solution for the second
phase of the algorithm.

Small accounts priority strategy - it
doesn’t, necessarily provide itself an accept-
able solution because the accounts with a big-
ger ordered quantity might be under satisfied,
but the allocation has a great potential of being
improved in the second phase of the algo-
rithm; it consists in the following steps:
1. try to allocate the entire quantity executed
at the closest price to the weighted average
price, to the account (not yet satisfied) which
has the smallest ordered quantity;
2. there might be a difference between the
quantity (the number of shares) executed at
that price and the actual ordered quantity fro
that given account; we call this difference ad-
justment, and we’ll allocate the adjustment to
the next account (from the ascending sorted
list of the accounts - ordered quantities - with
the respect to the original ordered quantity –
to not be exceeded – and the explicitly as-
signed priority, where it is necessary); note
that the adjustment may be distributed to
several accounts, respecting the afore men-
tioned condition, for each account we try to
satisfy the entire ordered quantity at the clos-
est possible price to the average;
3. repeat the previous steps to the remotest
(from the average) executed price.
As we specified, this strategy for generating
the initial basis solution, might not satisfy inte-
grally the ordered quantity for the big ac-
counts (especially when the executed quantity
differs significantly from the originally ordered
quantity), but this issue is resolved by the sec-
ond phase of the algorithm, and this allocation
turns out to be a very efficient initial basis so-
lution for the optimization phase.

Second phase – concerns, in fact, the class
of the heuristic algorithms that we have been
intending to present. They follow, essentially,
a greedy strategy. The algorithms provide an
improvement of the solution at each iteration
[1]. There is defined an objective function,
which serves as criteria for continuing, respec-
tively stopping, the iterative process. The

Economy Informatics, no. 1/2001 47

manner in which the objective function is de-
fined, assures that with each iteration it is
made a step forward toward a better alloca-
tion, although the optimality of the final solu-
tion is not necessarily assured [2, 3].
A. The objective function based on the
total allocated quantity.
For ease, let’s consider n the number of ac-
counts, m the number of distinct prices at
which the order for the product kP was exe-
cuted, and the allocated quantities

),1;,1(njmia ji == .








→
m

m
k p

E
pp
EE

P L
21

21 ,

the pairs of executed quantities and the corre-
sponding prices.

),1(
1

njaA
m

i
jij == ∑

=

.

 C1 C2 . . . Cn
E1 11a 21a . . . na1 1p

E2 12a 22a . . . na2 2p

.

.

.

.

.

.

.

.

.

 .
.
.

.

.

.
Em 1ma 2ma . . . nma mp

 1A 2A . . . nA

 1∆ 2∆ . . . n∆

 1p 2p . . . np p

 1V 2V nV

The steps of the algorithm are as followings:
1. for each product we have computed (at
the time of the preparations), based on the
ordered quantities, the coefficients

∑
=

= n

j
j

j
j

q

q
s

1

which are going to be use as reference. After
the rough allocation is completed we are able
to calculate

∑
=

=
n

j
j

j
j

A

A
c

1

 as the current coeffi-

cients at this stage;

2. we calculate the lag between the current
values and the references,

),1(njsc jjj =−=∆ ;

),1(10;10 njsc jj =≤≤≤≤ , and the ob-

jective function is given by

j

n

j
jobjf ∆








∆= ∑

=

;min
1

 being the absolute

value of
j∆ ;

3. we select the)min(j∆ and)max(j∆ ,

determining in this way the column which has
the highest deficit and the column which has
the highest surplus, respectively; a quantity,
equivalent to a lot size, is transferred from the
column with highest surplus to the column with
the highest deficit; the row, respectively the
price at which this switch is accomplished, is
determined based on the most important im-
pact [2, 3, 4] that the swap may produce at
each iteration of the algorithm (greedy strat-
egy’s essence), considering at each attempt
the availability of the necessary quantity that
has to be transferred; if, at this step, we are
not able to find two different columns for sat-
isfying the min-max condition, then the algo-
rithm stops here, and the current solution is
considered the best that we can reach;
4. repeat from step 1, using as current solu-
tion the allocation resulted after the quantity
equivalent to a lot size was switched between
the two chosen columns; we obtain a new
value for the objective function objf ′ . The al-

gorithm continues until the stop condition is
reached: 10, <<<′− εεobjobj ff .

It has to be specified the fact that we record
the pairs of the columns between which a
transfer has occurred, the row (associated to
the executed price) and the direction of the
transfer, in order to not go forward and
backward inside the space of the solutions,
and for avoiding the cyclical traps. This ap-
proach is consistent with the greedy method’s
general nature, and secures the reach of an
optimal solution, or a solution located in the
very vicinity to an optimal one.

Economy Informatics, no. 1/2001 48

For the next two algorithms, the basic idea is
retained. The way in which we define the ob-
jective function determines essentially the final
solution, function of which criteria is more
relevant for the real purpose (context).
B. The objective function based on the
average price.
This algorithm puts a greater emphasis on
having an average price, for each account, as
close as possible to the general average price:

∑

∑

=

=

×
= n

i
i

n

i
ii

E

pE
p

1

1

)(, computed for each product.

The following steps describe the essence of
the algorithm:
1. for each account we calculate the average

price at this stage:

∑

∑

=

=

×
= n

i
ji

n

i
iji

j

a

pa
p

1

1

)(
, mj ,1= ;

2. calculate the deltas as

),1(1 mj
p

p j
j =−=∆ and the objective

function as:
j

n

j
jobjf ∆










∆= ∑

=

;min
1

 being the

absolute value of j∆ ;

3. take advantage from using the same min-
max technique that we have used in the pre-
vious algorithm, for detecting the pair of col-
umns which will be involved in a swap of a lot
size; the same stop condition for this step;
4. repeat from step 1 using as current solu-
tion the allocation resulted after the quantity
equivalent to a lot size was switched between
the two chosen columns; we obtain a new
value for the objective function objf ′ . The al-

gorithm continues until the stop condition is
reached: 10, <<<′− εεobjobj ff .

C. The objective function based on the
total value.
This variant of the algorithm combines the
previous ones, offering the best balance be-
tween the fairly allocated quantities (based on
the orders), and the desired average price for

each client account as close as possible to the
general average price p .
1. At the first step we calculate the values al-
located on client accounts after the rough al-
location is completed, using the average price
for each account determined as in the previ-
ously presented algorithm:

),1(njpAV jjj =×= ; the coefficients cj
become weighted averages:

),1(nj
V

V

V

pA
c jjj

j ==
×

= , where

∑
=

=
n

j
jVV

1

;

2. calculate the deltas as
),1(njsc jjj =−=∆ ;

),1(10;10 njsc jj =≤≤≤≤ , and the ob-

jective function is given by

j

n

j
jobjf ∆








∆= ∑

=

;min
1

 being the absolute

value of j∆ ; the sj are the initial, referential

coefficients, used in the first presented algo-
rithm;
3. use the same min-max strategy for de-
termining the two columns which will be in-
volved in the swap, with the same stop condi-
tion;
4. repeat, similarly from step 1; a new value
for the objective function is obtained - objf ′ .

The algorithm continues until the stop condi-
tion is reached: 10, <<<′− εεobjobj ff .

The last algorithm provides better, overall, so-
lutions. Function of the concrete demands, the
first two algorithms may be more suitable for
certain cases.
The algorithms are designed to solve the allo-
cation problem for both program trading
and single stock trading.

References:
[1] – George Nemhauser, Laurence Wolsey –
Integer and Combinatorial Optimization –
John Wiley & Sons, Inc., 1999;

Economy Informatics, no. 1/2001 49

[2] – Donald L. Kreher, Douglas R. Stinson –
Combinatorial Algorithms – Generation,
Enumeration and Search – CRC Press
LLC, 1999;
[3] – William J. Cook, William H. Cunning-
ham, William R. Pulleyblank, Alexander

Schrijver – Combinatorial Optimization –
John Wiley & Sons, Inc., 1998;
[4] – Zbigniew Michalewicz, David B. Fogel
– How to Solve It: Modern Heuristics –
Springer-Verlag Berlin Heidelberg, 2000.

