
Economy Informatics, 1-4/2008

16

Approximating Mathematical Semantic Web Services
Using Semantic Description Decomposition and Approximation Formulas

Andrei-Horia MOGOS, Adina Magda FLOREA
andrei.mogos@cs.pub.ro , adina.florea@cs.pub.ro
 “Politehnica” University of Bucharest, România

 The domain of semantic web services is one of the important areas of the computer
science research. Mathematical semantic web services are very useful in practice, however
only a small number of related research results are reported. This paper presents a system
that attempts to obtain a mathematical semantic web service using its semantic description. If
the service cannot be found, then the system tries to obtain an approximation of that service,
using a semantic description decomposition and approximation formulas.
Keywords: mathematical semantic web service, web service approximation.

Introduction
A web service is "a software system de-

signed to support interoperable machine-to-
machine interaction over a network." [1] In
order to support important dynamic and au-
tomated tasks such as discovery, selection,
and composition, web services must be sup-
plied with more semantics. The semantic
web, that is a web of machine-processable in-
formation, could solve this problem by com-
bining web service technology with the se-
mantic representation of information and,
through this, enable automatic and dynamic
interaction between software systems [2].
Recently, there are some efforts to develop
languages for the description of mathematical
semantic web services. The most important
initiative is the MONET project [3]. The aim
of the MONET project is to demonstrate the
applicability of the latest ideas for creating a
semantic web to the world of mathematical
software, using algorithms to match the cha-
racteristics of a problem to the advertised ca-
pabilities of available services and then in-
voking the chosen services through a stan-
dard mechanism.
The paper is organized as follows. In Section
2, we give a description of the problem. In
Section 3, we describe the algorithm used to
solve the prob lem. Section 4 presents the
structure of the system. In Section 5, we give
an example of how our system works while
Section 6 contains some conclusions and fu-
ture work.
In the rest of the paper, we will use the ab-

breviation MSWS for ‘mathematical seman-
tic web service’.

2. T he problem
A MSWS m2 approximates another MSWS
m1, if for each input of m1, m2 gives almost
the same output as m1. The difference be-
tween the outputs of m1 and the outputs of
m2 is controlled by an expression error.
We understand by semantic description (SD),
the semantic information used for a web ser-
vice, i.e., that information that allows a ma-
chine to understand what a service does. We
understand by complete description (CD), the
entire information used for describing a web
service, including its semantic description.
The problem we are trying to solve can be
described as follows: we have a semantic de-
scription of a MSWS, let's call it service D, a
library of MSWSs and another library of ap-
proximation formulas. We want to provide
the service D, or at least an approximation of
that service.
The initial semant ic description of the
MSWS, the semantic descriptions of the
MSWSs in the library, and the approximation
formulas use the same semantic language. In
this way, we can see the right part of an ap-
proximation formula, ignoring the expression
error, as a semantic description of a MSWS
App. Therefore, we can construct that MSWS
App using the same algorithm as we use for
the initial MSWS, service D.
We make the following convention: every
MSWS needed for constructing a more com-

1

mailto:andrei.mogos@cs.pub.ro�
mailto:adina.florea@cs.pub.ro�

Economy Informatics, 1-4/2008

17

plex MSWS necessary for an approximation
formula can be found in the MSWS library.

3. The algorithm
Next, we will describe the algorithm used to
solve the problem:
 1: Algorithm (SD_MSWS)
 2: CD_MSWS = search (SD_MSWS, MSWS_library)
 3: if CD_MSWS < > void
 4: return CD_MSWS
 5: d_tree = void
 6: d_tree = decompose (SD_MSWS, d_tree)
 7: tree_level = 1
 8: while (1) {
 9: aux_tree_level = 0
10: for-each node in d_tree, level =
 tree_level {
11: SD_MSWS_node = get_SD_MSWS (node)
12: CD_MSWS_node = search (SD_MSWS_node,

 MSWS_library)
13: if CD_MSWS_node < > void
14: add (CD_MSWS_node, node)
15: else {
16: d_tree = decompose (SD_MSWS_node,
 d_tree)
17 aux_tree_level = 1 }}
18: if aux_tree_level = 0
19: break
20: else
21: tree_level = tree_level +1 }
22: for-each leaf in d_tree {
23: CD_MSWS_leaf = get_SD_MSWS (leaf)
24: if CD_MSWS_leaf = void {
25: SD_MSWS_leaf =get_SD_MSWS (leaf)
26: SD_approx_formula = search
 (SD_MSWS_leaf, approx_formula_library)
27: if SD_approx_formula = void
28: return ApproxFailed
29: CD_MSWS_leaf = Algorithm

(SD_approx_formula)
30: add (CD_MSWS_leaf, leaf) }}
31: CD_MSWS = compose (d_tree)
32: return CD_MSWS }

The algorithm receives a semantic descrip-
tion of a web service and returns the com-
plete description of that web service.
If we cannot find a MSWS in MSWS library,
corresponding to that semantic description,
we decompose that description until we ob-
tain a tree: each leaf of this tree contains a
semantic descript ion that corresponds to a
MSWS in MSWS library or contains a se-
mantic description that doesn’t correspond to
a MSWS in MSWS library, but the semantic
description cannot be decomposed any fur-
ther. The main idea used for a decomposition
step is the following: we have a mathematical
calculus formula; thus, we have an operation
order, so at each step a single operation is
computed. As our point of decomposition,
we consider the operation with the lowest
priority. If the operation is f (f1 (n), f2 (n), f3

(n), … fm (n)), the decomposition is f, f1 (n),
f2 (n), f3 (n), …, fm (n). If an operation fi (n)
cannot be decomposed, it will appear as ‘fi’
in the decomposition, instead of fi (n). Here
‘n’ is the input of the MSWS.
For each leaf in the tree, that doesn’t have a
corresponding MSWS in MSWS library, we
try to find an approximation formula. If we
find a formula, then we search in the MSWS
library to get some MSWS that, composed,
computes the right part of the approximation
formula. After this step, the tree contains on-
ly leaves with associated MSWSs.
The call of the function ‘Algorithm’ in line
29, doesn’t create an infinite recursion, be-
cause the function is called with the argu-
ment ‘SD_approx_formula’ and from the
convention made in Section 2, all the neces-
sary MSWSs for an approximation formula
in Approximation Formula Library will be
found in the MSWS Library.
The last step is to compose the complete de-
scriptions of the MSWSs in the tree to get the
complete description for the initial service.
This complete descript ion gives us, among
other information, the information we need to
call the service.

4. System Structure
The system structure is presented in Figure 1.
The Processing Agent receives a semantic
description of a MSWS and returns a com-
plete description of that MSWS. The agent
uses the algorithm presented in Section 3 and
the interactions with Decomposition Module,
Composition Module and Searching Agent.
The Decomposition Module is responsible
with the function ‘decompose’ from the algo-
rithm, in lines 6 and 16. The Composition
Module is used for the function ‘compose’ in
line 31.
The Searching Agent is used for the function
‘search’, in lines 2, 12, 26. For the ‘search’
function call in lines 2 and 12, the Searching
Agent uses the MSWS Matching Module.
This module receives a semantic description
of a MSWS and tries to find a corresponding
MSWS in the MSWS Library. For the
‘search’ function call in line 26, the Search-
ing Agent uses the Approximation Formula

Economy Informatics, 1-4/2008

18

Matching Module. This module receives a
semantic description of a MSWS and tries to
find a corresponding approximation formula
in the Approximation Formula Library.

Processing

Agent

Decomposition Module

Composition Module

Searching Agent

MSWS
Matching Module

Approximation Formula
Matching Module

MSWS
Library

Approximation Formula
Library

SD

CD

Fig.1. The system structure

5. An example
To use our system, we must use a semantic
language which allows every mathematical
formula to be written using only ASCII cha-
racters (with codes 0-127).

 5 * pow (fact (n), n - 3) + 1

5 * pow (fact (n), n - 3) +

* pow (fact (n), n - 3)

pow fact -

Fig.2. The operations tree

We have the semantic description 5 * pow
(fact (n), n - 3) + 1, where fact (n) stands for
n!. We consider that this MSWS has one in-
put ‘n’ and one output. The MSWS Library
contains the following MSWSs: +,-, *, /,
pow, sqrt. The Approximation Formula Li-
brary contains, among other formulas, the
following formula:
fact (n) ≈ sqrt (2*n*π) * pow (n, n) * pow (e,
-n) (Stirling’s formula [4])
In Figure 2, we present the tree constructed
for this example by our algor ithm. All the
leaves in this tree have a corresponding
MSWS in MSWS Library, except for ‘fact’.

For ‘fact’ we find an approximation formula
in the Approximation Formula Library. For
the expression sqrt (2*n*π) * pow (n, n) *
pow (e, -n), in the Stirling’s Formula, we ap-
ply again our algorithm. The resulting tree
has for each leaf a corresponding MSWS in
MSWS Library. Finally, our expression is
5 * pow (sqrt (2*n*π) * pow (n, n) * pow (e,
-n), n - 3) + 1,
and after the composition process, we have
enough information to access a MSWS that
performs the computations specified by the
above expression.

6. Conclusions
This paper presents an original method of
approximating MSWSs using semantic de-
scription decomposition and approximation
formulas. The approach used for this purpose
is the composition of semantic web services
using goal decomposition. Our system tries
first to use some MSWSs in a MSWS Li-
brary, and if this fails, it uses some approxi-
mation formulas to create the composed
MSWS.
One prob lem that has to be further consi-
dered is errors propagation. The approxima-
tion formulas might be very good, but de-
pending on the structure of the expression
corresponding to the initial MSWS, the over-
all error can become big enough so that the
approximation of the MSWS cannot be use-
ful in practice. Another problem to consider
is the construction of a metric to compare
two approximation formulas for the same
function. This is not easy because it might be
necessary to compare the errors for the two
formulas, which can lead to the necessity to
perform function comparison.

7. References
1. W3C Working Group: “Web Services Archi-
tecture”, February 2004,
http://www.w3.org/TR/ws-arch/
2. Studer, R., S. Grimm, and A. Abecker (Eds.):
Semantic Web Services. Concepts, Technologies,
and Applications, Springer, 2007, p. 159
3. The MONET Project,
http://monet.nag.co.uk/monet/
4. planetmath.org/encyclopedia/StirlingsApproxi-
mation.html

