
Economy Informatics, 1-4/2006 17

Building Analytic Reports for Decision Support
Systems – Aggregate vs. Analytic Functions

Prof. Ion LUNGU PhD., assist. Adela BÂRA, assist. Vlad DIACONIŢA

Academy of Economic Studies, Bucharest

In order to build analytic reports for Decision Support Systems (DSS) in an organization we
can choose to do it by using Business Intelligence techniques such as OLAP and data ware-
housing or by using traditional reports based on SQL queries. The cost and developing time
for BI tools is greater than those for SQL Reports and these factors are important in taking
decision on what type of techniques we used for DSS. But some of the requirements of DSS
such as prediction or roll-up can make SQL reports development a difficult job. This paper
presents some of the analytic functions that are involved in developing SQL reports.
Keywords: Decision Support Systems (DSS), Structured Query Language (SQL), aggregate
functions, analytic functions.

ntroduction
The main goal of Decision Support Sys-

tems (DSS) is to assist managers, at different
levels in the organization, in taking decisions
and to provide in real time representative in-
formation, to help and support them in their
activities such as analyzing departamental
data, planning and forecasting activities for
their decision area [LIBA01].
Throught Decision Support Systems
managers can manipulate large sets of data in
a short period of time or in real time systems.
In essence, managers at every departamental
level can have a customized view that
extracts information from transactional
sources and summarizes it into meaningful
indicators. DSS can gather data from ERP
systems implemented in an organization from
different functional areas or modules such as:
financials, inventory, purchase, order mana-
gement, production. Information from this
functional modules within a ERP system is
managed by a relational software database
such as Oracle Database. In the lates versions
in addition to aggregate functions Oracle
implemented analitycal functions to help
developerers building decision support
reports [ORMG01]. These functions will be
presented in the following sections.
Aggregate versus analytic functions
Aggregate functions applied on a set of re-
cords return a single result row based on
groups of rows. Aggregate functions such as
SUM, AVG and COUNT can appear in SE-

LECT statement and they are commonly
used with the GROUP BY clauses. In this
case Oracle divides the set of records into
groups, specified in the GROUP BY clause.
Contrary, if the user does not specified any
GROUP BY clause then Oracle returns only
a single record as a result of the function that
are applied.
Aggregate functions are used in analytic re-
ports to divide data in groups and analyze
these groups separately and for building sub-
totals or totals based on groups.
Oracle provides an extended list of aggregate
functions such as: AVG, CORR_X, COUNT, CO-
VAR_X, DENSE_RANK, FIRST, LAST, MAX, ME-
DIAN, MIN, PERCENTILE_X, RANK, REGR_X,
STATS_X, STDDEV_X, SUM, VAR_X, VARIANCE,
where _X represents an extension or different
types of similar functions [ORA10g].
Analytic functions process data based on a
group of records but they differ from aggre-
gate functions in that they return multiple
rows for each group. The group of rows is
called a window and is defined by the ana-
lytic clause. For each row, a sliding window
of rows is defined and it determines the range
of rows used to process the current row.
Window sizes can be based on either a
physical number of rows or a logical interval,
based on conditions over values.
Analytic functions are performed after com-
pleting operations such joins, WHERE,
GROUP BY and HAVING clauses, but be-
fore ORDER BY clause. Therefore, analytic

I

Economy Informatics, 1-4/2006 18

functions can appear only in the select list or
ORDER BY clause.
Analytic functions are commonly used to
compute cumulative, moving and reporting
aggregates [ORA10g].
The structure of an analytic function is:
ANALYTIC_FUNCTION (arguments) OVER (ana-
lytic clause)
If you want to indicate that the function op-
erates on a query result set then you should
use OVER analytic clause, where analytic
clause may have the following options:
PARTITION BY (expression1, expression2,…) OR-
DER [SIBLINGS] BY expression / position /alias
[ASC/DESC] [nulls first/last] WINDOW CLAUSE
In order to partition the query result set into
groups based on one or more expressions use
the PARTITION BY clause. If you omit this
clause, then the function treats all rows of the
query result set as a single group.
Window clause can be:
ROWS/RANGE [BETWEEN] {UNBOUNDED
PRECEDING}/ {CURRENT ROW}/ {expression
PRECEDING/FOLLOWING}[AND] {UN-
BOUNDED PRECEDING}/ {CURRENT ROW}/
{expression PRECEDING/FOLLOWING}
If no window clause is present then Oracle
considers it to RANGE BETWEEN UN-
BOUNDED PRECEDING AND CURRENT ROW.
In most cases aggregate functions have the
analytic version, that’s way the list of ana-
lytic function is: AVG, CORR, COVAR_X,
COUNT, DENSE_RANK, FIRST, FIRST_VALUE,
LAG, LAST, LAST_VALUE, LEAD, MAX, MIN,
NTILE, PERCENT_RANK, PERCENTILE_CONT,
PERCENTILE_DISC, RANK, RATIO_TO_REPORT,
REGR_X, ROW_NUMBER, STDDEV_X, SUM,
VAR_X, VARIANCE.
 In the following section we’ll try to use
these analytic functions in queries that can be
applied in decision support reports.
Building analytic queries
We’ll consider a set of examples based on
the following tables: FURNIZORI,
COMENZI_APROV, PRODUSE and RU-
LAJE_BALANTA. The structure of these ta-
bles can be found at: http://bd.ase.ro and also
a set of records for testing.
1) AVG function is used to calculate the av-
erage of values of rows specified in window
clauses. For example, in order to calculate
the average of net period over 3 consecutives
days group by company we can write:

select e.compania, e.cont, e.moneda,
e.data, e.rulaj_d,

avg(e.rulaj_d) over (partition by
e.compania order by e.data
rows between 1 preceding and 1 fol-
lowing) as medie_rulaj_debitor
from rulaje_balanta e;

Using ROWS BETWEEN 1 PRECEDING AND 1
FOLLOWING clause then we analyze the
neighbours of the current row relative to one
position in days and for every company.
Modifying the clause we can analyze the av-
erage of net period over 3 months (preceding,
current and following month):

select e.compania, e.cont, e.moneda,
e.data, e.rulaj_d,
avg(e.rulaj_d) over (partition by
e.compania order by extract(month
from e.data)
rows between 1 preceding and 1 fol-
lowing) as medie_rulaj_debitor
from rulaje_balanta e
order by e.data;

2) COUNT function in analytic version is
used to calculate the number of rows in-
volved in the window clause. In the follow-
ing example we count the number of prod-
ucts for each vendor having order value be-
tween [current value-1000 and current value
+1000] or in the range 1000 less than through
1000 greater than the current order value:

select c.vendor_id,
c.inventory_item_id,
count(*)
over (order by
(c.unit_price*c.quantity_received)
range between 1000 preceding and
1000 following) as
nr_comenzi_interval
from expr_detalii_comenzi_apr_v c

Another example counts the number of com-
panies that have the period net in the range
1000 less than trough 1000 greater than the
current unit for class 6 accounts and where
currency is RON:

select e.cont,
e.compania,sum(rulaj_d),
count(*)
over (order by sum(rulaj_d) range
between 1000 preceding and 1000

Economy Informatics, 1-4/2006 19

following) as nr_vecini
from rulaje_balanta e
where e.moneda ='RON' and cont
like'6%'
group by e.cont, e.compania
order by cont

3) MIN and MAX function in the analytic
version are used to classify and build ratings
over the rows in the window clause. In the
following example the products are classified
over order values for each vendor:

select c.vendor_id, c.organization_id,
min(c.unit_price*c.quantity_received
) keep (dense_rank first order by
unit_price)
over (partition by
c.inventory_item_id) as inferior,
max(c.unit_price*c.quantity_received
) keep (dense_rank last order by
unit_price)
over (partition by
c.inventory_item_id) as superior
from
EXPR_DETALII_COMENZI_APR_V
c
order by c.vendor_id

Another example is used to classify all ex-
penses for 6 class accounts chart between the
current account limits:

select e.compania,
e.cont,sum(e.rulaj_d),
min(sum(e.rulaj_d)) keep
(dense_rank first order by e.cont)
over (partition by e.cont) as inferior,
max(sum(e.rulaj_d)) keep
(dense_rank last order by e.cont)
over (partition by e.cont) as superior
from rulaje_balanta e
where cont like'6%' and
moneda='RON'
group by e.compania, e.cont
order by cont, sum(e.rulaj_d)

4) FIRST_VALUE and LAST_VALUE
functions are used as another method for
classifying over a range. The main advantage
is that through these functions can be proc-
essed rows with similar limits, but with dif-
ferent classifications criteria. The above ex-
amples can be done like this:

select e.compania,

e.cont,sum(e.rulaj_d),
first_value(sum(e.rulaj_d)) over (par-
tition by e.cont order by
sum(e.rulaj_d) rows unbounded pre-
ceding) as inferior,
last_value(sum(e.rulaj_d)) over (par-
tition by e.cont order by
sum(e.rulaj_d) rows between un-
bounded preceding and unbounded
following) as superior
from rulaje_balanta e
where cont like'6%' and
moneda='RON'
group by e.compania, e.cont
order by cont, sum(e.rulaj_d)

Modifying the window clause we can find
out we are the minimum and maximum value
between current period net ± 1000000 RON:

select e.compania,
e.cont,sum(e.rulaj_d),
first_value(sum(e.rulaj_d)) over (par-
tition by e.cont order by
sum(e.rulaj_d) range between
1000000 preceding and 1000000 fol-
lowing) as inferior,
last_value(sum(e.rulaj_d)) over (par-
tition by e.cont order by
sum(e.rulaj_d) range between
1000000 preceding and 1000000 fol-
lowing) as superior
from rulaje_balanta e
where cont like'6%' and
moneda='RON'
group by e.compania, e.cont
order by cont, sum(e.rulaj_d)

5) LAG and LEAD functions report the cur-
rent value to previous/next values of each
row specified in the window clause. The
functions provide access to more than one
row of a table at the same time without a self
join. Given a series of rows returned from a
query and a position of the cursor, LAG and
LEAD provide access to a row at a given
physical offset prior /beyond that position. If
you do not specify offset, then its default is 1.
The optional default value is returned if the
offset goes beyond the scope of the window.
If you do not specify default, then its default
is null [ORA10g].
Using LAG function in the next example we

Economy Informatics, 1-4/2006 20

retrieve the current and the previous values
of period net with an offset equal to 1:

select e.cont,e.data,
e.compania,sum(e.rulaj_d) ru-
laj_curent,
lag(sum(e.rulaj_d),1,0) over (order
by cont, data, compania)
as rulaj_anterior
from rulaje_balanta e
where cont like'6%' and
moneda='RON'
group by e.cont, e.data, e.compania

An with LEAD function we can retrieve the
current and the next values of period net with
an offset equal to 1:

select e.cont,e.data,
e.compania,sum(e.rulaj_d) ru-
laj_curent,
lag(sum(e.rulaj_d),1,0) over (order
by cont, data, compania)
as rulaj_anterior,
lead(sum(e.rulaj_d),1,0) over (order
by cont, data, compania)
as rulaj_urmator
from rulaje_balanta e
where cont like'6%' and
moneda='RON'
group by e.cont, e.data, e.compania

LAG and LEAD functions are very useful for
forecasts and predictions over the historical
and current data with the specified offset.
6) RANK function is used also for classifica-
tion, returning the current position in the
window. For example we can retrieve the po-
sition of each type of expense in the amount
of expenses:

select e.compania, e.cont,
sum(e.rulaj_d),
rank() over (partition by e.compania
order by sum(e.rulaj_d) desc) pozitie
from rulaje_balanta e
where e.moneda='ron' and e.cont like
'6%'
group by e.compania, e.cont
order by e.compania, pozitie

7) SUM function used in an analytical man-
ner calculates a cumulative total based on
each group in the window. Next, we can cal-
culate subtotals for order valuein the range
100000 less than trough 100000 greater than

the current order:
select
c.vendor_id,c.inventory_organization
_id, c.inventory_item_id,
sum(c.unit_price*c.quantity_received
)
over (partition by
c.inventory_organization_id
order by
c.unit_price*c.quantity_received
range between 100000 preceding and
100000 following) cumulat
from expr_detalii_comenzi_apr_v c

Or, we can change the window clause to cal-
culate subtotals for orders that have values
less than or equal to current order:

select
c.vendor_id,c.inventory_organization
_id, c.inventory_item_id,
sum(c.unit_price*c.quantity_received
)
over (partition by
c.inventory_organization_id
order by
c.unit_price*c.quantity_received
range unbounded preceding) cumu-
lat
from expr_detalii_comenzi_apr_v c

Conclusions
Decision Support Systems are regularly
based on a set of views that extract, join and
aggregate rows from many tables from the
ERP systems. In order to develop such types
of systems we can choose BI tools or Reports
based on SQL queries. The last solution is
low consuming developing time and costs.
For developing reports easiest an important
option is to choose analytic functions for
predictions (LAG and LEAD), subtotals over
current period (SUM and COUNT), classifi-
cations or ratings (MIN, MAX, RANK,
FIRST_VALUE and LAST_VALUE).
References
[LIBA01] Lungu Ion, Bara Adela, Fodor Anca - Business
Intelligence tools for building the Executive Information
Systems, 5thRoEduNet International Conference, Universi-
tatea Lucian Blaga, Sibiu, june 2006
[ORA10g] Oracle Corporation - Database Performance
Tuning Guide
10g Release 2 (10.2), Part Number B14211-01, 2005
[ORMG01] Oracle Corporation - Oracle Magazine, 2006
[NET**] www.oracle.com

