
Economy Informatics, 1-4/2006 55

Optimal Control of Software Using the Markov Decision Processes

Marian CRISTESCU, Gabriel SOFONEA
“Lucian Blaga” University of Sibiu

In this article we present a technique for requirements analysis and evolution for problems
involving the optimal control of a software or physical system. The requirements take the
form of a function indicating when the system has reached a desired state. A solution which
meets the requirements takes the form of a controller which specifies how the system should
act. A human operator iteratively analyses and refines a given presentation of the require-
ments on a human readable high symbolic level and evaluates the resulting solution by the
means of a graphical display.
Keywords: computational intelligence, intelligent mobile agent, human computer interface,
evolutionary computation, software system.

Introduction
Our approach aims towards a fruitful synthe-
sis of requirements engineering (RE) and
computational intelligence (CI). We target
problems involving the optimal control of a
software or physical system. Requirements
take the form of a function indicating when
the system has reached a desired state. A so-
lution which meets the requirements takes
the form of a controller which specifies the
behavior of the system. We use methods
from CI to automatically compute solutions
to a given set of requirements. Specifically,
we use a form of stochastic dynamic pro-
gramming called reinforcement learning. Our
approach requires that the representation of
the requirements is machine-readable, i.e.,
that the algorithm can use the representation
as input to automatically compute a solution
to the given set of requirements and the rep-
resentation of the requirements is human-
readable, i.e., that a human operator can un-
derstand the representation of the require-
ments in such a way that it is easy for her to
relate changes/refinements in the require-
ments to the solution. In this context we util-
ize Markov Decision Processes (MDPs) for
the requirements representation to ensure,
i.e., the representation of the requirements in
a machine-readable format. To ensure, i.e.,
how to represent the requirements in a hu-
man-readable format we draw connections to
the field of human computer interfaces
(HCIs).
The requirements could then be handed off to
a better learning algorithm, to find a better

solution, or passed on in a human-readable
format.
2. Automated Requirements Engineering
In the introduction we present MDPs as an
underlying framework for RE methodology.
MDPs are a general way to model sequential
decision making problems. In the MDP
framework an agent is trying to reach a pre-
defined goal by interacting with the envi-
ronment. MDPs have been utilized in as di-
verse problem domains as airline meal provi-
sioning [9], goal management in organiza-
tions [5], spoken dialogue systems [2], and
planetary exploration [6].
2.1 Anatomy of an MDP
We will focus on finite, discrete, infinite ho-
rizon MDPs. An MDP is called finite if it
consists of a finite number of states and ac-
tions. A discrete MDP consists of discrete
states and actions. An infinite horizon indi-
cates that there is no absorbing or end state.
A discrete MDP is a tuple P = hS,A, T, ,Ri,
that consists of:
• a state space S = {s1, s2, . . . , sN}, of car-
dinality |S| = N,
• a set of primitive actions A = {a1, a2, . . . ,
ak}, of cardinality |A| = k,
• a transition function T : S × A × S ! [0, 1],
• a discount factor 2 (0, 1], and
• a reward function R : S ! R1)
An agent acting inside an MDP perceives at
each time step t the current state s € S of the
environment and chooses an action a € A
from a set of possible actions which results
into a relocation of the agent to a new state,
s’, according to the dynamics of the envi-

Economy Informatics, 1-4/2006 56

ronment specified by the transition function
T(s’|s,a), whereupon the agent receives a
numerical reward according to the reward
function R(s). The transition function must
represent a valid probability distribution.
In the MDP framework an agent is acting
towards a goal that is specified by the reward
function. The reward function tells the agent
how well it is performing and the goal of the
agent is to maximize the discounted sum of
rewards over time. The discount factor de-
termines the value of future rewards. In the
context of RE, the reward function equals the
set of requirements.
The behavior of the agent is called a policy, π
: S → A, which determines an action for the
agent for any possible state. Note, that poli-
cies can be stochastic mappings, π : S ×
A→[0,1].
From the perspective of RE, a policy is a so-
lution to a given set of requirements, embod-
ied in a reward function. In conventional
software engineering (SE) the programmer is
trying to build a program according to a
given set of requirements that should result in
the desired behavior of the executable code.
In our methodology we are trying to build a
reward function (=set of requirements) that
should result in the desired behavior of the
resulting policy/controller. Much like in con-
ventional programming it can be hard to
know if the resulting behavior of the policy
will be the desired behavior. To tackle this
problem we are debugging the policy by
step-wise altering parameters of the underly-
ing MDP. This is similar to modifying con-
ventional program code with a debugger and
therefore altering the behavior of the result-
ing application. We can think of the MDP as
the program code in a SE project and the re-
sulting learned policy as the executable ap-
plication. The learning step in our case which
is needed for computing an optimal policy
(=example solution) is analogous to the com-
pile step in software engineering. An MDP
also needs an initial state, s0, or an initial dis-
tribution over states, S0. The model is
Markov if the state transitions are independ-
ent of any previous environment states or
agent actions [1].

2.2 MDP Life-cycle
An analogy between SE and MDPs illustrates
the coarse concept of the RE methodology:
In SE the basic software life-cycle deter-
mines the evolution of a program. The soft-
ware life-cycle is a term used to describe the
various phases through which software trav-
els. A classic software process model used in
SE is the waterfall model of the software life-
cycle. The phases of the waterfall model are
analysis, design, implementation, and test.
Other software process models used in SE
are, e.g., the spiral model [8] and extreme
programming (XP) [3]. The idea of the soft-
ware life-cycle is also true for MDPs. The
hypothetical “MDP life-cycle” basically con-
sists of the same phases as the software life-
cycle. The difference is that instead of main-
taining software, we are maintaining MDPs
and policies (=agent behaviors).
2.3 Iterative Requirements Analysis and
Evolution
The set of requirements are represented by
the reward function of an MDP. If the
learned solution w.r.t. the given requirements
does not produce the desired behavior, a hu-
man operator iteratively modifies parameters
of the underlying MDP while observing the
agent behavior which changes according to
the alterations of the MDP parameters. This
basic mode of operation forms a kind of
feedback loop:
1. Observe agent behavior π — Is the agent
doing the right thing w.r.t. a given set of re-
quirements?;
2. Modify requirements embodied in the re-
ward function of an MDP P → P’, and;
3. Compute an example solution π’‘ of the al-
tered MDP P’ based on P.
Repeat steps 1, 2 and 3 until the agent is do-
ing the right thing.
The architecture of RE methodology consists
of three basic components (B1 and B2 count
as one component):
(A) A visual representation of agent behav-
ior;
(B1) A human readable representation of the
underlying MDP and requirements;

Economy Informatics, 1-4/2006 57

(B2) A human computer interface for the
purpose of navigating inside the underlying
MDP,
and
(C) An algorithm for quickly solving related
MDPs.

 debug
P →→→ P’
↓ ↓
↓ ↓ (1)
π →→→ π’

The iterative evolution of requirements and
solutions can best be illustrated as solving
sequences of related MDPs. Diagram 1 illus-
trates two related MDPs P and P’ and their
respective policies π and π’. With each itera-
tion of the process a slightly modified new
MDP P’ based on the previous old version of
MDP P is created. The idea is that the human
operator modifies the underlying MDP only a
little with each debug step. In order to see the
effects of this change it is necessary to solve
the new MDP P’ based on the old MDP P
and the old policy π.
3. Requirements Engineering Approach
The RE approach has direct connections and
interrelations to a variety of different fields
of study, i.e. RL (related to component C),
SE (related to component B2), Human Com-
puter Interfaces (HCI) (related to components
A, B1, B2), and Utility theory and Evolu-
tionary Computation (EC) (related to compo-
nent B1).
3.1 Reinforcement Learning
In the field of RL we think that work on
MDPs [20] and quickly solving related
MDPs [5] are relevant to the concept of our
RE architecture.
Besides the basic idea of our RE methodol-
ogy as an interactive tool that makes the
agent do the right thing, we can use existing
learning techniques for the purpose of giving
hints to the agent to accelerate the learning
process. This can be done manually by e.g.
providing sample trajectories and replaying
them [3], or by designing a shaping reward
function in a restricted editing mode that just
allows sound transformations [6], or by using
a supplied control policy like in the JAQL
framework [3]. Other learning methods for

instructing the agent are apprenticeship learn-
ing [1], imitation learning [9], shaping [6, 2]
and reward functions [7, 4].
An open problem when solving large MDPs
are the long learning times. To tackle this
problem in the context of the RE architecture
an algorithm that can quickly solve related
MDPs would be beneficial. Another idea to
cope with the long learning times and to pro-
vide more immediate feedback to the user is
to generate an approximate solution of the
MDP that coarsely gives the human user an
intuition on how the behavior of the agent
will change before finally learning the solu-
tion to the altered MDP.
3.2 Software Engineering
From the world of SE we would like to apply
general ideas from the field of software de-
buggers [9] and specific concepts found in a
typical state-of-the-art software debugger
(e.g., Microsoft’s Visual Studio .NET debug-
ger), i.e., watches (for visualizing parameters
of the MDP), breakpoints (for marking single
states or regions of states in state-space), and
edit and continue (a feature that allows to di-
rectly continue policy execution after editing
parameters of the MDP).
The following list describes the functionality
of typical debugger commands found in a
conventional debugger in the context of de-
bugging MDPs:
Go: Executes policy from the current state or
state-action pair until a breakpoint or the
terminal-state is reached, or until the task
pauses for user input.
Restart: Restarts agent at start state.
Stop Debugging: Leaves debugging mode.
Break: Halts the agent at its current state or
state-action pair.
Apply MDP Changes: Applies parameter
changes to MDP.
Step Into: Single-steps through states or
state-action pairs w.r.t. current policy, and
enters each MDP region that is encountered.
Step Over: Single-steps through states or
state-action pairs w.r.t. current policy. If a
periphery state is reached, the appropriate
MDP region is executed without stepping
through it.

Economy Informatics, 1-4/2006 58

Step Out: Executes policy out of an MDP
region, and stops on the exit periphery-state.
Using this command, you can quickly finish
executing the current MDP region after de-
termining that a bug is not present in the
MDP region.
Run to Cursor: Executes the policy as far as
the state or state-action pair that contains the
“cursor” in the human-readable MDP dis-
play. This is equivalent to setting a tempo-
rary breakpoint at the cursor location. This
command can be used to return to an earlier
state or state-action pair to retest an agent,
using e.g. a different reward function.
Step Into Specific Region: Single steps
through states in the policy, and enters the
specified MDP region.
Set Next State: Sets the next state or state-
action pair. Use this command when you
want to rerun a “section” within the current
MDP/MDP region or to skip a section of an
MDP/MDP region you do not want to exe-
cute. For instance, a section that contains a
known bug and continue debugging other
sections.
Occasionally the debugger is paused in break
mode, meaning the debugger is waiting for
user input after completing a debugging
command (like break at breakpoint, step
into/over/out/to
cursor, break after Break command or Re-
start).
A breakpoint can be used to mark states that
are interesting w.r.t. the debugging process in
state space; policy execution will stop when
that state in state-space (=breakpoint) is
reached. Like in a conventional debugger the
human operator of the debugger can conven-
iently inspect the MDP (=program) and
change parameters accordingly. Advanced
breakpoint syntax is a feature that allows for
specifying logical conditions on when a
breakpoint is reached. In the paper context
this feature would be useful for specifying
conditions like positive reward cycles and
then notifying the user about that event. Posi-
tive reward cycles distract the agent from do-
ing
the right thing and cause bugs like the one in-
troduced in the bicycle task where the bicycle

tended to move in circles around the start
state.
Finally we want to apply insights about how
to design the development process to mini-
mize errors, automate as much as possible,
increase usability by using concepts like im-
mediacy [5].
3.3 Human Computer Interfaces
From HCI we want to borrow a human read-
able representation of MDPs. Specific prob-
lems are: How can we display reward func-
tions, shaping potentials and states in a hu-
man readable way. Other problems in this di-
rection is, e.g., about analogical representa-
tion of programs [8] and software visualiza-
tion for debugging [2]. Another important
problem is that of finding a generic represen-
tation of the MDP display, i.e., one that
works with an arbitrary problem domain. The
question of which instruments/tools should
we give to a human operator for the task of
modifying the parameters of the MDP is also
HCI related.
3.4 Evolutionary Computation and Utility
Theory
Work in evolutionary computation (EC)
about fitness function design is interesting in
connection with reward function design [7]
and representation and work in interactive
evolutionary computation (IEC) [4] might
give rise to ideas about possible problem
domains and how to incorporate a human
into the system. Similarly in utility theory
work on utility function design and utility
elicitation is related to reward function de-
sign.
4. Conclusions
Building upon the idea of the RE methodol-
ogy it would be possible to construct an Inte-
grated Development Environment (IDE) for
MDP design. The debugger would be a sub-
component of the IDE. The MDP-IDE should
provide the means for assembling a model of
the world, e.g. different physics modules
could be hooked up to produce a model, dif-
ferent standard reward functions (reward at
goal, reward for moving towards goal, etc.)
An important aspect related to this paper is to
design a standard interface for the modules.
Another idea for a sub-component of the

Economy Informatics, 1-4/2006 59

MDP-IDE is a profiler that displays statistics
of MDPs. The profiler is not for fixing poli-
cies but for fine tuning for best performance,
e.g., altering the reward function so that it is
robust to small perturbations in the world dy-
namics, or modifying parameters of the MDP
so that it is more likely to be easily solved by
our approximation method.
References
[1] - Abbeel P., and Andrew Y. Ng., “Ap-
prenticeship learning via inverse reinforce-
ment learning” Submitted to the Twenty-
First International Conference on Machine
Learning, 2004;
[2] - Baecker R., DiGiano C., and Marcus A.,
“Software visualization for debugging”,
Communications of the ACM, 40(4):44–54,
April 1997;
[3] - Beck K., “Embracing change with ex-
treme programming”, IEEE Computer,
32(10):70–77, October 1999;
[4] - Boehm B. W., “A spiral model of soft-
ware development and enhancement”, IEEE
Computer, 21(5):61–72, May 1988;
[5] - Kaelbling L.P., Littman M.L., and
Moore A.P., “Reinforcement learning: A sur-
vey”, Journal of Artificial Intelligence Re-
search, 4:237–285, 1996;

[6] – Levin E., Pieraccini R, and Eckert W.,
“Using Markov decision process for learning
dialogue strategies”, In Proceedings of the
1998 International Conference on Acoustics,
Speech and Signal Processing (ICASSP-98),
volume 1, pages 201–204, New York, NY,
May 1998;
[7] – Ng A.Y., Harada D., and Russell S.,
“Policy invariance under reward transforma-
tions: Theory and application to reward
shaping”, In Proceedings of the Sixteenth In-
ternational Conference on Machine Learning,
pages 278–287, San Francisco, CA, 1999;
[8] –Takagi H., “Interactive evolutionary
computation: Fusion of the capacities of EC
optimization and human evaluation”, Pro-
ceedings of the IEEE, 89(9):1275–1296, Sep-
tember 2001;
[9] - Ungar V., Lieberman S., and Fry A.V.,
“Debugging and the experience of immedi-
acy”, Communications of the ACM,
40(4):38–43, April 1997.

