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In this article we present a technique for requirements analysis and evolution for problems 
involving the optimal control of a software or physical system. The requirements take the 
form of a function indicating when the system has reached a desired state. A solution which 
meets the requirements takes the form of a controller which specifies how the system should 
act. A human operator iteratively analyses and refines a given presentation of the require-
ments on a human readable high symbolic level and evaluates the resulting solution by the 
means of a graphical display. 
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Introduction 
Our approach aims towards a fruitful synthe-
sis of requirements engineering (RE) and 
computational intelligence (CI). We target 
problems involving the optimal control of a 
software or physical system. Requirements 
take the form of a function indicating when 
the system has reached a desired state. A so-
lution which meets the requirements takes 
the form of a controller which specifies the 
behavior of the system. We use methods 
from CI to automatically compute solutions 
to a given set of requirements. Specifically, 
we use a form of stochastic dynamic pro-
gramming called reinforcement learning. Our 
approach requires that the representation of 
the requirements is machine-readable, i.e., 
that the algorithm can use the representation 
as input to automatically compute a solution 
to the given set of requirements and the rep-
resentation of the requirements is human-
readable, i.e., that a human operator can un-
derstand the representation of the require-
ments in such a way that it is easy for her to 
relate changes/refinements in the require-
ments to the solution. In this context we util-
ize Markov Decision Processes (MDPs) for 
the requirements representation to ensure, 
i.e., the representation of the requirements in 
a machine-readable format. To ensure, i.e., 
how to represent the requirements in a hu-
man-readable format we draw connections to 
the field of human computer interfaces 
(HCIs). 
The requirements could then be handed off to 
a better learning algorithm, to find a better 

solution, or passed on in a human-readable 
format. 
2. Automated Requirements Engineering 
In the introduction we present MDPs as an 
underlying framework for RE methodology. 
MDPs are a general way to model sequential 
decision making problems. In the MDP 
framework an agent is trying to reach a pre-
defined goal by interacting with the envi-
ronment. MDPs have been utilized in as di-
verse problem domains as airline meal provi-
sioning [9], goal management in organiza-
tions [5], spoken dialogue systems [2], and 
planetary exploration [6]. 
2.1 Anatomy of an MDP 
We will focus on finite, discrete, infinite ho-
rizon MDPs. An MDP is called finite if it 
consists of a finite number of states and ac-
tions. A discrete MDP consists of discrete 
states and actions. An infinite horizon indi-
cates that there is no absorbing or end state. 
A discrete MDP is a tuple P = hS,A, T, ,Ri, 
that consists of: 
• a state space S = {s1, s2, . . . , sN}, of car-
dinality |S| = N, 
• a set of primitive actions A = {a1, a2, . . . , 
ak}, of cardinality |A| = k, 
• a transition function T : S × A × S ! [0, 1], 
• a discount factor  2 (0, 1], and 
• a reward function R : S ! R1) 
An agent acting inside an MDP perceives at 
each time step t the current state s € S of the 
environment and chooses an action a € A 
from a set of possible actions which results 
into a relocation of the agent to a new state, 
s’, according to the dynamics of the envi-
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ronment specified by the transition function 
T(s’|s,a), whereupon the agent receives a 
numerical reward according to the reward 
function R(s). The transition function must 
represent a valid probability distribution. 
In the MDP framework an agent is acting 
towards a goal that is specified by the reward 
function. The reward function tells the agent 
how well it is performing and the goal of the 
agent is to maximize the discounted sum of 
rewards over time. The discount factor de-
termines the value of future rewards. In the 
context of RE, the reward function equals the 
set of requirements. 
The behavior of the agent is called a policy, π 
: S → A, which determines an action for the 
agent for any possible state. Note, that poli-
cies can be stochastic mappings, π : S × 
A→[0,1]. 
From the perspective of RE, a policy is a so-
lution to a given set of requirements, embod-
ied in a reward function. In conventional 
software engineering (SE) the programmer is 
trying to build a program according to a 
given set of requirements that should result in 
the desired behavior of the executable code. 
In our methodology we are trying to build a 
reward function (=set of requirements) that 
should result in the desired behavior of the 
resulting policy/controller. Much like in con-
ventional programming it can be hard to 
know if the resulting behavior of the policy 
will be the desired behavior. To tackle this 
problem we are debugging the policy by 
step-wise altering parameters of the underly-
ing MDP. This is similar to modifying con-
ventional program code with a debugger and 
therefore altering the behavior of the result-
ing application. We can think of the MDP as 
the program code in a SE project and the re-
sulting learned policy as the executable ap-
plication. The learning step in our case which 
is needed for computing an optimal policy 
(=example solution) is analogous to the com-
pile step in software engineering. An MDP 
also needs an initial state, s0, or an initial dis-
tribution over states, S0. The model is 
Markov if the state transitions are independ-
ent of any previous environment states or 
agent actions [1]. 

2.2 MDP Life-cycle 
An analogy between SE and MDPs illustrates 
the coarse concept of the RE methodology: 
In SE the basic software life-cycle deter-
mines the evolution of a program. The soft-
ware life-cycle is a term used to describe the 
various phases through which software trav-
els. A classic software process model used in 
SE is the waterfall model of the software life-
cycle. The phases of the waterfall model are 
analysis, design, implementation, and test. 
Other software process models used in SE 
are, e.g., the spiral model [8] and extreme 
programming (XP) [3]. The idea of the soft-
ware life-cycle is also true for MDPs. The 
hypothetical “MDP life-cycle” basically con-
sists of the same phases as the software life-
cycle. The difference is that instead of main-
taining software, we are maintaining MDPs 
and policies (=agent behaviors). 
2.3 Iterative Requirements Analysis and 
Evolution 
The set of requirements are represented by 
the reward function of an MDP. If the 
learned solution w.r.t. the given requirements 
does not produce the desired behavior, a hu-
man operator iteratively modifies parameters 
of the underlying MDP while observing the 
agent behavior which changes according to 
the alterations of the MDP parameters. This 
basic mode of operation forms a kind of 
feedback loop: 
1. Observe agent behavior π — Is the agent 
doing the right thing w.r.t. a given set of re-
quirements?; 
2. Modify requirements embodied in the re-
ward function of an MDP P → P’, and; 
3. Compute an example solution π’‘ of the al-
tered MDP P’ based on P. 
Repeat steps 1, 2 and 3 until the agent is do-
ing the right thing. 
The architecture of RE methodology consists 
of three basic components (B1 and B2 count 
as one component): 
(A)   A visual representation of agent behav-
ior; 
(B1) A human readable representation of the 
underlying MDP and requirements; 
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(B2) A human computer interface for the 
purpose of navigating inside the underlying 
MDP, 
and 
(C) An algorithm for quickly solving related 
MDPs. 

  debug 
P →→→ P’ 
↓   ↓ 
↓   ↓ (1) 
π →→→ π’ 

The iterative evolution of requirements and 
solutions can best be illustrated as solving 
sequences of related MDPs. Diagram 1 illus-
trates two related MDPs P and P’ and their 
respective policies π and π’. With each itera-
tion of the process a slightly modified new 
MDP P’ based on the previous old version of 
MDP P is created. The idea is that the human 
operator modifies the underlying MDP only a 
little with each debug step. In order to see the 
effects of this change it is necessary to solve 
the new MDP P’ based on the old MDP P 
and the old policy π. 
3. Requirements Engineering Approach 
The RE approach has direct connections and 
interrelations to a variety of different fields 
of study, i.e. RL (related to component C), 
SE (related to component B2), Human Com-
puter Interfaces (HCI) (related to components 
A, B1, B2), and Utility theory and Evolu-
tionary Computation (EC) (related to compo-
nent B1). 
3.1 Reinforcement Learning 
In the field of RL we think that work on 
MDPs [20] and quickly solving related 
MDPs [5] are relevant to the concept of our 
RE architecture. 
Besides the basic idea of our RE methodol-
ogy as an interactive tool that makes the 
agent do the right thing, we can use existing 
learning techniques for the purpose of giving 
hints to the agent to accelerate the learning 
process. This can be done manually by e.g. 
providing sample trajectories and replaying 
them [3], or by designing a shaping reward 
function in a restricted editing mode that just 
allows sound transformations [6], or by using 
a supplied control policy like in the JAQL 
framework [3]. Other learning methods for 

instructing the agent are apprenticeship learn-
ing [1], imitation learning [9], shaping [6, 2] 
and reward functions [7, 4]. 
An open problem when solving large MDPs 
are the long learning times. To tackle this 
problem in the context of the RE architecture 
an algorithm that can quickly solve related 
MDPs would be beneficial. Another idea to 
cope with the long learning times and to pro-
vide more immediate feedback to the user is 
to generate an approximate solution of the 
MDP that coarsely gives the human user an 
intuition on how the behavior of the agent 
will change before finally learning the solu-
tion to the altered MDP. 
3.2 Software Engineering 
From the world of SE we would like to apply 
general ideas from the field of software de-
buggers [9] and specific concepts found in a 
typical state-of-the-art software debugger 
(e.g., Microsoft’s Visual Studio .NET debug-
ger), i.e., watches (for visualizing parameters 
of the MDP), breakpoints (for marking single 
states or regions of states in state-space), and 
edit and continue (a feature that allows to di-
rectly continue policy execution after editing 
parameters of the MDP). 
The following list describes the functionality 
of typical debugger commands found in a 
conventional debugger in the context of de-
bugging MDPs: 
Go: Executes policy from the current state or 
state-action pair until a breakpoint or the 
terminal-state is reached, or until the task 
pauses for user input. 
Restart: Restarts agent at start state. 
Stop Debugging: Leaves debugging mode. 
Break: Halts the agent at its current state or 
state-action pair. 
Apply MDP Changes: Applies parameter 
changes to MDP. 
Step Into: Single-steps through states or 
state-action pairs w.r.t. current policy, and 
enters each MDP region that is encountered. 
Step Over: Single-steps through states or 
state-action pairs w.r.t. current policy. If a 
periphery state is reached, the appropriate 
MDP region is executed without stepping 
through it. 
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Step Out: Executes policy out of an MDP 
region, and stops on the exit periphery-state. 
Using this command, you can quickly finish 
executing the current MDP region after de-
termining that a bug is not present in the 
MDP region. 
Run to Cursor: Executes the policy as far as 
the state or state-action pair that contains the 
“cursor” in the human-readable MDP dis-
play. This is equivalent to setting a tempo-
rary breakpoint at the cursor location. This 
command can be used to return to an earlier 
state or state-action pair to retest an agent, 
using e.g. a different reward function. 
Step Into Specific Region: Single steps 
through states in the policy, and enters the 
specified MDP region. 
Set Next State: Sets the next state or state-
action pair. Use this command when you 
want to rerun a “section” within the current 
MDP/MDP region or to skip a section of an 
MDP/MDP region you do not want to exe-
cute. For instance, a section that contains a 
known bug and continue debugging other 
sections. 
Occasionally the debugger is paused in break 
mode, meaning the debugger is waiting for 
user input after completing a debugging 
command (like break at breakpoint, step 
into/over/out/to 
cursor, break after Break command or Re-
start). 
A breakpoint can be used to mark states that 
are interesting w.r.t. the debugging process in 
state space; policy execution will stop when 
that state in state-space (=breakpoint) is 
reached. Like in a conventional debugger the 
human operator of the debugger can conven-
iently inspect the MDP (=program) and 
change parameters accordingly. Advanced 
breakpoint syntax is a feature that allows for 
specifying logical conditions on when a 
breakpoint is reached. In the paper context 
this feature would be useful for specifying 
conditions like positive reward cycles and 
then notifying the user about that event. Posi-
tive reward cycles distract the agent from do-
ing 
the right thing and cause bugs like the one in-
troduced in the bicycle task where the bicycle 

tended to move in circles around the start 
state. 
Finally we want to apply insights about how 
to design the development process to mini-
mize errors, automate as much as possible, 
increase usability by using concepts like im-
mediacy [5]. 
3.3 Human Computer Interfaces 
From HCI we want to borrow a human read-
able representation of MDPs. Specific prob-
lems are: How can we display reward func-
tions, shaping potentials and states in a hu-
man readable way. Other problems in this di-
rection is, e.g., about analogical representa-
tion of programs [8] and software visualiza-
tion for debugging [2]. Another important 
problem is that of finding a generic represen-
tation of the MDP display, i.e., one that 
works with an arbitrary problem domain. The 
question of which instruments/tools should 
we give to a human operator for the task of 
modifying the parameters of the MDP is also 
HCI related. 
3.4 Evolutionary Computation and Utility 
Theory 
Work in evolutionary computation (EC) 
about fitness function design is interesting in 
connection with reward function design [7] 
and representation and work in interactive 
evolutionary computation (IEC) [4] might 
give rise to ideas about possible problem 
domains and how to incorporate a human 
into the system. Similarly in utility theory 
work on utility function design and utility 
elicitation is related to reward function de-
sign. 
4. Conclusions 
Building upon the idea of the RE methodol-
ogy it would be possible to construct an Inte-
grated Development Environment (IDE) for 
MDP design. The debugger would be a sub-
component of the IDE. The MDP-IDE should 
provide the means for assembling a model of 
the world, e.g. different physics modules 
could be hooked up to produce a model, dif-
ferent standard reward functions (reward at 
goal, reward for moving towards goal, etc.) 
An important aspect related to this paper is to 
design a standard interface for the modules. 
Another idea for a sub-component of the 
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MDP-IDE is a profiler that displays statistics 
of MDPs. The profiler is not for fixing poli-
cies but for fine tuning for best performance, 
e.g., altering the reward function so that it is 
robust to small perturbations in the world dy-
namics, or modifying parameters of the MDP 
so that it is more likely to be easily solved by 
our approximation method. 
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