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The main purpose of this paper is to simulate the evolution of the labor cost in the case of job
training, in the framework of a model presented in [1]. The aim is to give a numerical support
for a strategy of periodic training, to maintain the “in — house” workers productivity within

some limits.

he mathematical model

The evolution of the labor cost in the
case of job training is given by the equation:

AW

(1) €)= Q) K + [ox = (@~ Bu®)x )L, (0}
+cu(t)L, (t)
In the above equation:
W, - the wage per unit of “outside” labor.
X - the productivity of contracted “out-

side” labor.
Q(t) - the production function given by:

(2) Qt)=sK+ XL1 ®)+ (1-Pu(t))x(t)L > ®

s - the productivity of capital (assumed to be
constant).

K - the capital (assumed to be fixed).

L;(t) -the number of “outside” labor available
at a competitive market.

B - the opportunity cost of training (as-
sumed to be constant 0<B<I1).

u(t) - the control variable which express the
intensity of “in — house” labor training;
O<u(t)<l.

xX(t) - the productivity of “in — house” labor.
L,(t) -the number of “in-house” labor.

o  -the “loyalty” coefficient (assumed to
be constant 0<a<l).

x0=x(0) is the initial “in-house” labor produc-
tivity.

c is the training cost per worker per unit of
time (assumed to be constant).

If u=1 then “in — house” labor is training
100% of the time and if u=0 the “in-house”
labor is not training.

The evolution of the productivity x(t) is gov-
erned by the state equation:

dx _ _x® _
®) —u(t)[l Y +5x(t)} 8x(t)

In the equation (3): Y is a constant greater
than or equal to the outside—labor productiv-
ity X; xo<X<Y; d - represents human capital
depreciation in the absence of training (>0,
0 -assumed to be constant).

The “in — house” wage adjustment equation
is:

4 W, ()= Xo“%"' (1- a)x(t)%

Equations (1)-(4) define the mathematical
model of the labor cost in the case of job
training.

One problem is to choose the control variable
u(t) which minimizes the labor cost of pro-
duction Q.

The Hamiltonian of the above problem is
given by [1]:

(5) H:%[Q—SK—Q(X—XO)Lz]—X8x+

W 1
-{YlﬁxLz +cL, +X(l—?x +8x)}u =

=H,(x,A)+uH,(x,A)

Hy — represents the part over which the firm
has no control, and Hju - represents the part
which can be influenced by the control func-
tion u.

The first order conditions for optimality are :

B - X ox)—8x
© dt Y
a [(1 W
Lol ==5fu+d [+ —LL, (5
m KY ju+ } + X ,(8—Pu)

Since the Hamiltonian (5) is linear in the
control, the application of the maximum
principle leads to a “bang — bang” solution.
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Numerical simulation

1if H, <0
(7) ut)y=<0if H,>0

any value in (0,1) if H, =0
The values of the parameters for simulation
are: W;=10; X=0.8; p=0.1; ¢=0.3; L,=500;
0=0.05; Y=1; Q=1000; o=0.8;K=100;s=1.
The numerical cod used for simulation is
Mathematica 4.0.
The curve defined by H;=0 in the (x,A) plane
for x>0 is plotted in Fig.1.
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Fig. 1. The curve defined by H;=0

Case 1. The productivity x(0) satisfies
X<x(0) and u(0)=0.

The solution of (6) corresponding to the ini-
tial conditions x(0)=0.9 and A(0)=-2000 is
plotted in Fig. 2.
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Fig. 2. Solution of (6) corresponding to the
initial condition x(0)=0.9 and A(0)=-2000

In this computation u(0)=0 because
H;(x(0),A(0))>0. Computation shows that:
for >0 H;(x(t),A(t))>0 and therefore u(t)=0
for t>0. The curve (x(t),A(t)) does not inter-
sect the curve defined by H;=0. The “in —
house” productivity x(t) decreases and tends
to 0 for t—oo.

The computed evolution of the value of the
labor cost C is plotted in Fig. 3.
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Fig. 3. The evolution of the labor cost

Computation shows that the labor cost in-
creases from C(0)=11250 to the steady cost
C(0)=15750 given by

8) C(w)= %(Q -sK) + %XOGL 5 Th

e computed evolution of the “outside” labor
cost C. is plotted in Fig.4.
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Fig. 4. The evolution of the “outside” labor
cost
Computation shows that the “outside” labor
cost C. increases from C.(0)=5625 to
Ce(o0)=11250. The computed evolution of the
“in-house” labor cost C; is plotted in Fig. 5.
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Fig. 5. The evolution of the “in-house” labor
cost

Computation shows that the “in-house” labor

cost C; decreases from C;(0)=5625 to

Ci(oo)=%xoaL2=4500. The computed evo-

lution of the number of the “outside” labors
is plotted in Fig. 6.
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Fig. 6. The evolution of the number of “out-
side” labors

Computation shows that the number of

“outside” labors increases from L;(0)=562 to

Li(0)=1125.

The computed evolution of production Q in

this case is plotted in Fig. 7.

1000

loaa

1a00

=
Z00 200 600 F00 1000

Fig. 7. The evolution of the production Q

Computation shows that the production Q(t)
is constant and equal to 1000 .
The computed production Q; of the “in-
house” labor is plotted in Fig.8.
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Fig. 8. The evolution of the production of the
“in — house” labor

Computation shows that Q; decreases from
Qi(0)=450 to Qji(0)=0.
The computed production Q. of the “out-
side* labor is plotted in Fig.9.
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Fig. 9. The evolution of the production of the
“outside” labor

Computation shows that Q. increases from
Q<(0)=450 to Qc(0)=900.

Case 2. The productivity x(0) satisfies
X<x(0) and u(0)=1.

For the initial conditions x(0)=0 and A(0)=-
7500 the solution of (6) is plotted in Fig. 10.
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Fig. 10. Solution of (6) corresponding to the
initial condition x(0)=0.9 and A(0)=-7500

In this computation u(0)=1 because
H;(x(0),A(0))<0. Computation shows that:
for t>0 H;(x(t),A(t))<0 and therefore u(t)=1
for t>0. The curve (x(t),A(t)) does not inter-
sect the curve defined by H;=0. The “in
house” productivity x(t) increases and tends
to 1 for t—oo.

The computed evolution of the value of the
labor cost C is plotted in Fig. 11.
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Fig. 11. The evolution of the labor cost

Computation shows that the labor cost de-

creases from C(0)=11962 given by
W W
9) CO=7(Q-sK+—Prly+cly 1o

C(0)=11525 given by
W, W,
(10) Ceo) =;1(Q—s1<)+§1 (@0p -0+B)L, +cL,

The term %(Q —sK)=11250 represents the

cost of the “outside” labor, the term

%BXOL2 =562 represents the opportunity cost
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of training and the term cL,=150 represents
the direct cost of training.

The computed evolution of the “outside” la-
bor cost C, is plotted in Fig. 12.
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Fig. 12. The evolution of the “outside” labor

cost

Computation shows that the “outside” labor
cost C. decreases from C.(0)=6180 to
Ce(0)=5620. The computed evolution of the
“in-house” labor cost C; is plotted in Fig. 13.
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Fig.13. The evolution of the “in - house” la-
bor cost

Computation shows that the “in — house” la-
bor cost Cj increases from C;(0) =5775 to
Ci(0)=5900. The computed evolution of the
number of the “outside” labors is plotted in
Fig. 14.
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Fig.14. The evolution of the number of the
“outside” labors

Computation shows that the number of the
“outside” labors decreases from L;(0)=618 to
L(0)=562. The computed evolution of the
production is plotted in Fig. 15.

0

1000

1000

Lo FBAHTNAT LMW

1000

bl

Za 0 a0 (1] kL

Fig. 15. The evolution of the production

Computation shows that the production Q is
constant and equal to 1000.
The computed evolution of the production of
the “in — house” labor is plotted in Fig. 16.
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Fig.16. The evolution of the production of
the “in — house” labor

Computation shows that Q; increases from
Qi(0)=405 to Qi(0)=450.
The computed evolution of the production of
the “outside “ labor is plotted in Fig. 17.
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Fig.17. The evolution of the production of
the “outside” labor

Computation shows that Q. decreases from
Qe(0)=495 to Qe(0)=450.

Case3.  The productivity x(0) satisfies
x(0)<X and u(0)=1.

For the initial conditions x(0)=0.2 and
M0)=-1500 the solution of (6) is plotted in
Fig. 18.
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Fig. 18. The solution of (6) corresponding to
the initial condition x(0)=0.2 and A(0)=-1500

In this computation u(0)=1 because
H;(x(0),A(0))<0. Computation shows that for
t>0 H;(x(t),M(t))<0 and therefore u(t)=1 for
t>0. The curve (x(t),A(t)) does not intersect
the curve defined by H;=0. The “in — house”
productivity x(t) increases and tends to 1 for
t—00.

The computed evolution of the value of the
labor cosct is plotted in Fig.19.
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Fig.19. The evolution of the value of the la-
bor cost

Computation shows that the labor cost de-
creases from C(0)=11525, given by:

(1) C0) == HQ=5K)+ Pl +cL,
to C (00)=8025, given by
W, W,
(12) C() =§1(Q—s1<)+§1((mo-oc+[3)12+c12

The term %(Q—SK)ZIIZSO represents the

cost of production of the “outside” labor, the
term %BXOLZZIZS represents the opportu-

nity cost of training and the term cL,=150
represents the direct cost of training. The
computed evolution of the “outside” labor
cost C. is plotted in Fig.20.
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Fig.20. The evolution of the “outside” labor
cost

Computation shows that the “outside” labor
cost C. decreases from C.(0)=10120 to
C(0)=5620. The computed evolution of the
“in-house” labor cost C; is plotted in Fig.21.
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Fig.21. The evolution of the “in - house” la-
bor cost

Computation shows that the “in — house” la-
bor cost C; increases from C;(0) =1400 to
Ci(0)=2400. The computed evolution of the
number of the “outside” labors is plotted in
Fig.22.
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Fig.22. The evolution of the number of “out-
side” labors

Computation shows that the number of the
“outside” labors decreases from L;(0)=1012
to L;(0)=562. The computed evolution of
production is plotted in Fig.23.
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Fig.23. The evolution of the production

Computation shows that the production Q is
constant and equal to 1000.
The computed evolution of the production of
the “in — house” labor is plotted in Fig.24.
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Fig.24. The evolution of the production of
the “in — house” labor

Computation shows that Q; increases from
Qi(0)=90 to Qi(o0)=450.
The computed evolution of the production of
the “outside “ labor is plotted in Fig.25.
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Fig.25. The evolution of the production of
the “outside” labor

Computation shows that Q. decreases from
Qe(0)=810 to Q.(0)=450.

Case 4.The productivity x(0)
x(0)<X and u(0)=0.

For the initial conditions x(0)=0.2 and
M0)=5000 the solution of (6) is plotted in
Fig.26.
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Fig.26. The solution of (6) corresponding to
the initial condition x(0)=0.2 and A(0)=5000

In this computation u(0)=0, because
H;(x(0),A(0))>0. Computation shows that:
for t>0 H;(x(t),A(t))>0 and therefore u(t)=0
for t>0. The curve (x(t),A(t)) does not inter-
sect the curve defined by H;=0. The “in —
house” productivity x(t) decreases and tends
to 0 for t—oo.

The computed evolution of the value of the
labor cost C is plotted in Fig.27.
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Fig.27. The evolution of the value of the la-
bor cost

Computation shows that the labor cost in-
creases from C(0)=11250 to the steady cost
C(0)=12250, given by

W W
(13) C(oo):Yl(Q - sK) +Y1X00,L2

The computed evolution of the “outside” la-
bor cost C. is plotted in Fig.28.
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Fig.28. The evolution of the “outside” labor
cost
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Computation shows that the “outside” labor
cost C. increases from C.(0)=10120 to
Ce(0)=11250.

The computed evolution of the “in-house”
labor cost C; is plotted in Fig.29.
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Fig.29. The evolution of the “in-house” la-
bor cost
Computation shows that the “in-house” labor
cost C; decreases from C;i(0)=1250 to

Ci(oo)z%xootL2 =1000.

The computed evolution of the number of the
“outside” labors is plotted in Fig.30.
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Fig.30. The evolution of the numbers of the
“outside” labor

Computation shows that the number of “out-
side” labors increases from L;(0)=1000 to
Li(o0)=1125.
The computed evolution of production Q in
this case is plotted in Fig.31.
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Fig.31. The evolution of the production

Computation shows that the production Q(t)
is constant and equal to 1000 .

The computed production Q; of the “in-
house” labor is plotted in Fig.32.
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Fig.32. The evolution of the production of
the “in — house” labor.

Computation shows that Q; decreases from
Qi(0)=100 to Qi(0)=0.
The computed production Q. of the “out-
side* labor is plotted in Fig.33.
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Fig.33. The evolution of the production of
the “outside” labor

Computation shows that Q. increases from
Qc(0)=800 to Qc(0)=900.

Conclusions
1) c<¥(a—ﬁ) and training determines the

increase of the “in - house” productivity and
the decrease of the labor cost at the minimal
level.

2) xp>X and training determines the increase
of the labor cost.

3) A strategy is to use periodic training to
maintain the productivity of the “in-house”
workers within some limits. The firm alter-
nates between periods of training (u=1) and
no training (u=0). In the training period,
productivity is raised up to maximum level
denoted by M and in the following period ,
productivity is allowed to decay to a mini-
mum level denoted by m.

The length of the training period, denoted by

I m) and the length
1-M

to 1s given by: t;, = In(
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of the non-training period, denoted by t;, is
given by: t, = lln(M) .

0 m
The costs during the period of training, de-
noted by Cy, is obtained by integrating the
cost function over the interval [0, to] and the
costs during the period of non training is ob-
tained by integrating the cost function over
the interval [0,t;], respectively.
The cost per unit of time over the period
[0,T], (where T=ty+t;) , denoted by Cy, is:

C, = Cy+f el 1Zm 1] 4
2 T 1-M

Wl 2™ v
+BL2ﬁ{ln|:l—M} M m)}+

+oL, %{(1—5-1 Jm —m)—ln{l_m}}

1-M

The first term on the right hand side of the
cost C, is the labor costs without training, the
second term is the direct cost of training, the
third term is the indirect cost of training and
the last term is the cost saving generated by
worker loyalty.
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