
Economy Informatics, 1-4/2005

103

Databases used for trees modeling

Associate Professor, Mirela-Catrinel VOICU Ph.D
Faculty of Economic Sciences, West University of Timişoara, România

In this paper we want to present an implementation method for eight-puzzle game. In the arti-
ficial intelligence literature, different algorithms are proposed for implement this game.
These methods concern different heuristic functions. For implementation, generally, expert
systems or different programming languages or environments (like C, Pascal, Java, Delphi
etc.) are used, in which the user must exploit a tree data structure. In our work we use data-
bases for to model a tree.

Introduction
The 8-puzzle game it’s a game 3x3, using

nine positions, in which we can move in the
free space eight pieces. From a start state,
we want to obtain a path solution to the goal
state. By constructing a search tree, the com-
puter can examine the possible configura-
tions of the puzzle systematically until it
reaches the goal state. Then by following the
path from the goal state back to the start
state, the computer can determine the correct
steps to solve the puzzle. Such an example is
presented in the Figure 1.

Fig.1. An search tree example for the 8-

puzzle problem

The tree comprises an arrangement of nodes each
of which holds information. The nodes are linked
by arcs (or edges). Each node in a tree has two,
three or four nodes descending from it down to
the bottom most nodes which have no nodes

emanating from them. The top most node (the
root) is the start state node.
The search tree for a particular problem can
grow in size quite rapidly if the goal state is
not found quickly. To reduce the amount of
searching the computer must do, the tree can
be constructed in a depth-first manner rather
than a breadth-first manner. In this way a
single branch of the tree is considered first
before examining other branches. The advan-
tage of this approach is that more promising
branches can be considered first.
A* is perhaps the most famous heuristic off-
line searching algorithm of all-time. Several
real-time algorithms have been based off
of A*, including the Learning Real-Time A*
and Real-time A* algorithms.
The basic concept of the A* algorithm is a
best-first search—the most probable paths
are explored first, searching outward from
the starting node until it reaches the goal
state node. The best path is determined by
choosing the option with the lowest cost,
where cost is measured by the function: f(n)
= g(n) + h'(n). The function g(n) is the actual
cost of the path so far, while h'(n) is a heuris-
tic function of the estimated cost of the path
from the current state to the final goal.
In our implementation we can use any heuris-
tic function, for this reason we do not recall
such heuristics.

2. Algorithm presentation
In the Figure 2, we present the databases
used to model the search tree. Each record
from this table refers a node from the tree. In
each such record we save the values used in a

1

Economy Informatics, 1-4/2005

104

node and additional information that concern
the node.
The field level is used for the node level from
the tree (the root level will be 0). The field
code is used for the unique identification of
the node in tree. This code is given in the or-
der in which the nodes will be created (the
root has the code 1). Each node from the tree

(excepting the root) has a unique parent node
and we save this code in the field par-
ent_code (for the root, the parent_code will
be 0). The field heuristic refers the result of
the used heuristic function. The fields termi-
nal, solution and expanded will have the
value n or y in function of the situation.

Fig.2. The database used to model the tree

Now, we present the implementation. We can
work with any programming environment,
which permits connection with databases.
The user must introduce the start state. The
application verifies if the start state is the
goal state. In the affirmative case, the algo-
rithm is finished.
In the negative case, the application inserts
the record corresponding to the root:
(0,1,0,value_of_a11,…, value_of_a33, re-
sult_of_heuristic_function,'n', 'n', 'n').

Now, while we do not have obtained a solu-
tion and there exist not expanded and not
terminal nodes, we will repeat the following
algorithm:
Step 1. We select a record from the table Ta-
ble1, which corresponds to a node with the
best heuristic, non-expanded and non-
terminals in the following way:
We determine the best heuristic:

s:='Select min(heuristic) from Table1 where expandat="n" and terminal="n" ';
adoquery2.SQL.Clear; adoquery2.SQL.Add(s); adoquery2.Open;
heumin:=adoquery2.Fields[0].AsInteger; adoquery2.SQL.Clear;

We select all the records which have the best heuristic:
s:='insert into heumin select * from table1 where heuristic='+inttostr(heumin)+' and expan-
dat="n" and terminal="n" ';
adoquery1.SQL.Clear; adoquery1.SQL.Add(s); adoquery1.ExecSQL;

We select the first such record:
adotable1.TableName:='heumin'; adotable1.Active:=true; adotable1.First;
level:=adotable1.Fields[0].AsInteger; code_p:= adotable1.Fields[1].AsInteger;
The values, which form the node, which will be expanded, are the followings:
x[1,1]:=adotable1.Fields[3].AsInteger; x[1,2]:=adotable1.Fields[4].AsInteger;
x[1,3]:=adotable1.Fields[5].AsInteger; x[2,1]:=adotable1.Fields[6].AsInteger;
x[2,2]:=adotable1.Fields[7].AsInteger; x[2,3]:=adotable1.Fields[8].AsInteger;
x[3,1]:=adotable1.Fields[9].AsInteger; x[3,2]:=adotable1.Fields[10].AsInteger;
x[3,3]:=adotable1.Fields[11].AsInteger;

Step 2. For the selected record from the Step
1, we create a table with contains all records
from the Table1, which forms the ancestors
of this record, in the following way:

For the selected record, we will insert the re-
cord corresponding to the parent node in a
table named ancestors:

codd:=adotable1.Fields[1].AsInteger;
s:='insert into ancestors select * from eumin where cod='+inttostr(codd);
adoquery1.SQL.Clear; adoquery1.SQL.Add(s); adoquery1.ExecSQL; adoquery1.SQL.Clear;

We will delete the table heumin (which correspond to the records with the best heuristic).
 s:='delete * from heumin'; adoquery1.SQL.Clear; adoquery1.SQL.Add(s); adoquery1.ExecSQL; ado-
query1.SQL.Clear;

For each record from the table ancestors, we will insert in this table its parent:
adotable1.Active:=false; adotable1.TableName:='ancestors'; adotable1.Active:=true;
adotable1.First; codd:=adotable1.Fields[2].AsInteger;
while(codd>0) do
begin
 s:='insert into ancestors select * from Table1 where cod='+inttostr(codd);

Economy Informatics, 1-4/2005

105

adoquery1.SQL.Clear; adoquery1.SQL.Add(s); adoquery1.ExecSQL;
adoquery1.SQL.Clear; adotable1.Active:=false; adotable1.TableName:=' ancestors ';
adotable1.Active:=true; adotable1.Last; codd:=adotable1.Fields[2].AsInteger;

end;

Step 3. For the node corresponding to the se-
lected record from the Step 1, the application
will generates its children nodes,

state(x, level+1, code_p,code);
in the following way:

Step 3.1. Firstly, the blank position is deter-
mined. In function of situation, the applica-
tion will create 2, 3 or 4 children nodes. We
present all possible situations in the Table 1.

procedure TForm1.state(a:tablou; l:integer; cp:integer; c:integer);
…
case blank_position of
 11: begin right(); down(); end;
 12: begin left(); down(); right(); end;
 13: begin left(); down(); end;
 21: begin up(); down(); right(); end;
 22: begin left(); up(); down(); right(); end;
 23: begin left(); down(); up(); end;
 31: begin up();right(); end;
 32: begin left(); up();right(); end;
 33: begin left(); up();end;
end;
end;

Node Children nodes

 right down

 left down right

 left dwn

 up right down

 left up down right

 left up down

 up right

 left up right

 left up
Table 1: children nodes

Step 3.2. When the application creates a new
children node (like in the Table 1), it is cal-
culate the heuristic (corresponding to this
new node) and it is verified if this node:
- is solution (for the new record, which will
be inserted in the table from the Figure 2,
this means: field terminal=’y’, solution=’y’
and expanded=’n’);
- exists in tree (in the ancestors tables from
the Step 2) and is not solution (this means:
field terminal=’y’, solution=’n’ and ex-
panded=’n’);
- exists not and is not solution (this means:
field terminal=’n’, solution=’n’ and ex-
panded=’n’);
The application inserts the record corre-
sponding to the new node in the table from
the Figure 2.

procedure TForm1.left(…);
…
sol:='n'; term:='n';exp:='n';
if heuristic=0 then
begin sol:='d'; term:='d'; end;
{b is the array corresponding to the new node}
s:='Select count(*) from ancestors where a11='+inttostr(b[1,1])+' and a12='+inttostr(b[1,2])+'
and a13='+inttostr(b[1,3])+' and a21='+inttostr(b[2,1])+' and a22='+inttostr(b[2,2])+' and

Economy Informatics, 1-4/2005

106

a23='+inttostr(b[2,3])+' and a31='+inttostr(b[3,1])+' and a32='+inttostr(b[3,2])+' and
a33='+inttostr(b[3,3]);
adoquery2.SQL.Clear; adoquery2.SQL.Add(s);adoquery2.Open;g:=adoquery2.Fields[0].AsInteger;
adoquery2.SQL.Clear;
if g>0 then term:='d';
s:='Insert Into Table1(level,code, parent_code,a11,a12,a13,a21,a22,a23,a31,a32,a33,heuristic,
terminal, solution, expanded) values('+inttostr(n)+', '+inttostr(f)+', '+inttostr(cp);
 For i:=1 to 3 do
 for j:=1 to 3 do
 s:=s +', '+inttostr(b[i,j]);
s:=s+', '+inttostr(heuristic)+', "'+term+'", "'+sol+'", "'+exp+'")';
adoquery1.SQL.Clear; adoquery1.SQL.Add(s); adoquery1.ExecSQL;
end;

Step 4. The ancestors table from the Step 2,
will be deleted.
In the moment in which the application stops
to repeat the Steps 1-4, we will have one
from the following situations:

1. we have founded a solution (we have
obtained as record - the goal state);

2. we have not solution, but in tree all
nodes are expanded or terminals.

In the first case, for viewing the solution
path, for the founded goal state, we will gen-
erate the ancestors table. Using this new ta-
ble, following the path from the start state to
the goal state we will obtain a solution path.

S:=’select count(*) from table1 where solution=”y” ‘;
adoquery2.SQL.Clear; adoquery2.SQL.Add(s); adoquery2.Open;
level:=adoquery2.Fields[0].AsInteger;
 if level>0 then
begin
{we insert the goal state in the table solution_path}
 s:=’insert into solution_path select * from table1 where solution=”y”’ ;
 adoquery2.SQL.Clear; adoquery2.SQL.Add(s); adoquery2.ExecSQL;
 adotable1.Active:=false; ado-
table1.TableName:=’solution_path’;adotable1.Active:=true;adotable1.First;
codd:=adotable1.Fields[2].AsInteger;

{For each record from the table solution_path, we will also insert, in this table, its parent
note}
 while(codd>0) do
 begin
 s:=’insert into solution_path select * from Table1 where code=’+inttostr(codd);
 adoquery1.SQL.Clear; adoquery1.SQL.Add(s); adoquery1.ExecSQL; adoquery1.SQL.Clear;
 adotable1.Active:=false; ado-
table1.TableName:=’solution_path’;adotable1.Active:=true;adotable1.Last;
 codd:=adotable1.Fields[2].AsInteger;
 end;

{The states will be ordered from the start state to goal state}
 s:=’Select * from solution_path order by cod’;
 adoquery1.SQL.Clear; adoquery1.SQL.Add(s); adoquery1.Open; adoquery1.First;

{The solution path will be displayed for viewing (in this case-like example, in a ListBox com-
ponent)}
 while not(adoquery1.Eof) do
 begin
 listbox1.Items.Add(adoquery1.Fields[3].AsString+’ ‘+ adoquery1.Fields[4].AsString+’
‘+adoquery1.Fields[5].AsString);
listbox1.Items.Add(adoquery1.Fields[6].AsString+’ ‘+ adoquery1.Fields[7].AsString+’
‘+adoquery1.Fields[8].AsString);
listbox1.Items.Add(adoquery1.Fields[9].AsString+’ ‘+ adoquery1.Fields[10].AsString+’
‘+adoquery1.Fields[11].AsString);
listbox1.Items.Add(‘-- -- -- --‘);
adoquery1.Next;
end;
 adoquery1.SQL.Clear;

In the Figure 3, we present a solution path
(in ListBox) for a start state. We recall also
that for certain start states there exists zero,
one or more solutions paths.
In the moment in which we have displayed

the solution path in ListBox or we find that
there exists not solution (for a certain start
state), all records from the databases will be
deleted. All construction from the databases
are used only for obtain the solution path.

Economy Informatics, 1-4/2005

107

Figure 3: A solution path for a start state

Conclusion
In this paper we have presented a certain case
(with applications, and generally studied in
the artificial intelligence domains) in which,
using database, we can model a tree struc-
ture. The using of databases to models tree
can be applied in more others practical situa-
tions. This method conduces to a quickly im-
plementation, because, in order to exploit the
tree, we can use SQL statements – and this
means: a short program, easy implementation
and short time to obtain the results.
We have presented a such implementation in
Delphi, using database from Access, but we
can use any programming environment
which accept the connection with different
database types.

References
1. http://www.cs.utexas.edu/users/novak/asg-
8p.html
2.http://kantz.com/jason/writing/8-
puzzle.htm
3.
http://www.csupomona.edu/~jrfisher/www/p
rolog_tutorial/5_2.html
4.
http://www.cs.duke.edu/~mlittman/courses/c
ps271/lect-05/node25.html
5.
http://www.aaai.org/AITopics/html/seachreas
on.html

6.
http://www.cc.gatech.edu/classes/cs3361_96
_spring/lecture-2.html
7.
http://www.informatics.sussex.ac.uk/courses/
kr/lec04.html
8.
http://thor.info.uaic.ro/~dcristea/cursuri/IAO
nWeb/IA4-SistProd-Control.htm
9. M.C. Voicu – Algoritmi şi aplicaţii în
Delphi vol. I, Ed. Mirton, Timişoara, 2003
10. M.C. Voicu – Viewpoints on the multidi-
mensional database theory – The Central and
East European Conference in Business In-
formation Systems, Cluj-Napoca, 20-22 mai
2004, volumul conferinţei, pag. 143-161
11. M.C. Voicu - On the multidimensional
database - the Seventh International Confer-
ence on Informatics in Economy IE 2005 –
Bucureşti, May 19-21, 2005
12. Voicu M., Mircea G. - Algorithm for ob-
taining aggregated value sets from multidi-
mensional databases – Conference Proceed-
ings of 5th WSEAS International Conference
on Applied Informatics ad Communications
(AIC 05), Malta, September 15-17, 2005
13. Voicu M., Mircea G.- Algorithms for ex-
ploiting multidimensional databases –
WSEAS Transactions on Information Sci-
ence and Applications, Issue 12, Volume 2,
December 2005, ISSN 1790-0832, pag.
2176-2183

