
Economy Informatics, 1-4/2005

57

The Experimental Evaluation of Interclass Testing
for Object Oriented Programming

Prof. Marian CRISTESCU, PhD

The “Lucian Blaga” University of Sibiu

The paradigm of object oriented is successfully applied in many software projects and the use
of the languages object oriented widely spread nowadays. The object oriented technologies
diminish or eliminate some typical problems of the procedural software, but on the other hand
they can introduce new problems wich have as a result classes of defects difficult to be
adressed by means of traditional technologies of testing. In particular, the defects depended
of the state, are to be meet more frequently in the object oriented programming systems rather
than the procedural ones; almost all object have an associated state, and the behavior of the
object. Such defects can hardly be decovered because they create anomalies only when the
objects are used in particular states.
Keywords: object oriented technology, interclass testing, reliability, flow graph analysis.

ntroduction
A relation of assembly between two

classes A and B appears when a A type
object can include one or more B type
objects. In this case the state of an A type
object depends on the state of the B type
objects witch it contains.
A relation of utilization between two classes
A and B intervenes when one or more A type
methods have at least local variable or a
parameter of B type.
The technique presupposes the generation of
some appeal sequences for a set of objects
which form a subsystem. The generated
sequences cover pairs of methods which
modify and utilize the state of some object.
Due to this thing, the sequences exercise the
object in subsystem in different states and
they can discover errors which appear only
when the class objects find it in particular
states.

Interclass-testing
The interclass testing is the testing of a set of
classes which form a system or a subsystem
usually procesed during the phase of
integration. Such classes are usually
independent entities but they mutually
cooperate in different ways.
These relations harmony classes represent a
fundamental characteristic of the oriented
objects sysytems during execution. These are

various classifications of interclass relations
and one of the most interesting relations is
the relation of assembly and utilization.
In order to extend this technique of
generating interclass tests to the interclass
case is to consider the mentioned relations
between objects: the relation of assembly and
utilization. The following aspects are to be
extended in particular:
• The concept of associating the definition
and utilization in the case the variables which
are not scalar entities but objects.
• The flux analysis of interclass dates in
order to analyze a set of classes
incrementally by reutilizing the total
information per each class. At the beginning
the technique produces specifications for
experimental cases automatically and later it
generates possible cases of testing for the
produced specifications.

The generation of specifications for testing
cases
The specifications of experimental cases for
interclass testing, generated by means of the
former methods are described as pair
methods in which the former method
modifies the state of the object while the
second method accesses the modified state.
The pair methods are generated by:

I

Economy Informatics, 1-4/2005

58

• The identification of some classifying
which allows the incremental analysis of the
data flux;
• The performing of some incremental
analyses of data flux to permit the work with
classes whose state comprises instances of
other classes.
Classification of classes - in order to perform
the incremental analysis of the data flux at
interclass level, a class is to be analyzed at a
certain moment, and the result of the
analyzed of each class is to be totaled. Then
the classes which are utilized or are included
in the other classes must be analyzed before
the classes which they use and certain. That
is why the first step taken in the interclass
analysis, is the identification of an order by
sequence of the analyses leased on the
relation of assembly and utilization between
two classes.
The two binary relations over the set of C
classes define an oriented graph whose
knotes are the classes of the set and whose
edges represent the relation of utilization
and/or assembly. Then it is presupposed that
the graph is conex. A noncom graph would
imply the presence of independent subsystem
which could be analysed separately.
Within the systems of object oriented
programming, well-designed, the structure
and the dependences should have as a result a

DAG (Data Analysis Graph) where there is a
partial order of the elements and a total
typological order aver such elements is
possible. The analysis of the classes in
concordance with this total order permits the
analyses of utilized class before the classes
which use it and an included class before the
classes which contain it. If the graph contains
cycles they can be eliminated by deleting one
or more edges and by manual supply of the
information which is calculated from the
vertex automatically.
The interclass data flux analysis – an
association between definition and utilization
is a triplet (d,u,v) where d and u are
declarations and v is a variable, d defines v, u
utilizes v, and there is a way from d to u
where v is not redefined. The techniques of
traditional data flux, used for procedural
programming systems were extended by
Harold and Rothermel in order to manipulate
sequences of object oriented code
[HARR94]. In order, to realize the interclass
testing, this technique is applied with a view
to calculating a subset of association’s
definition-utilization for a class. The subset
which presents interest in calculating
contains all associations of definition-
association which involve variables of scalar
instance of the class.

Example 1:
class Foo{ class Bar{
 public: private:
 int x; Foo foo;
1. void incX(){ public:
2. x++; void m(){

} 5. foo.x=0;
3. int getX(){ 6. foo.incX();
4. return x; 7. print(foo.getX());

} }
}; };

A definition of foo object a line 5 can be
easily identified in this example but the effect
of line 6 cannot be appreciated. The syntax of
line 6 is possible to contain a definition of
foo, an utilization of foo, or both of them, this
depending on the semantics of method
Foo::incX(). That is why the analyses of line
6 require initial analyses of Foo class. The
some consideration is maintained of line 7.

On the other hand after analyzing Foo class,
a classifications of method can be made,
dividing them into methods which define,
utilize or define and utilize the attributes of
Foo (for example: method which modify,
inspect or modify and inspect the state of
Foo).
For this example, the method Foo::incX() is
classified being a method which inspect and
modifies the state of Foo and Foo::getX() as

Economy Informatics, 1-4/2005

59

a method which inspects the state of Foo.
Using such cumulative information, the
utilization and the definition of foo an line 6
and the utilization of foo an line 7 can be
identified correctly.
Generally speaking, it can be asserted that an
object is defined, respectively utilized in a
declaration when any of its member variables
is defined and utilized in the declaration.

This definition is recurrent because a
member variable can be reutilized in an
object.
Therefore, before analyzing C class, concise
information for S set of the classes it depends
on, directly or indirectly is necessary. The
following version of classes Foo and Bar are
taken into consideration:

Example 2:
class Complex; class Bar{
class Foo{ private:
 public: Foo foo;

 complex x; public:
void incX(){ void m(){

 x. incRe(); …
} 8. foo.incX(); …
 }

}; };
In order to have the possibility of analyzing
Bar class scant information about class Foo
(direct dependence) and class complex
(indirect dependence through class Foo) is
necessary. Therefore, the calculation of the
concise information for a certain class
requires the classification of class methods as
being: modifier, inspector or inspector and
modifier at the same time, in concordance
with the effect the implementation of the
method has on the state of the class.
A method as a modifying role if its appeal
causes a modification of the class state, The
latter determining a change of the value of a
member class variable or an appeal to a
modifying method of a member variable.
One method is known as inspector if its
appeal determines the utilization of the value
of a member variable or he appeal of an
inspecting method of a member variable. A
method can be considered inspector-modifier
if it is both: an inspecting method and a
modifying method. The methods independent
of the state of the class (for example: the
methods which neither modify nor use
instances variables) are ignored during the
incremented analyses. So, in order to analyze
a C class, there appears his necessity of
calculating some scant information referring
both to the completion of assembly and
utilization relations which start from C class.
The find ordering of all classes in the
systems allows the efficient performing of

some calculations, by permanently analysis a
class before other classes which depend on it.
In order to determine the various
characteristic of his ways a method may offer
you, each way of a method can be considered
as if it were different method of the class
which applies the data flux analysis to each
way. This is a beneficial hypothesis to small
and average programming systems, but it is
unworkable with large and complex
applications because all the combinations of
the ways identified as formal steps are to be
considered. A similar problem arises when
using the traditional techniques of data flux
testing: the member of combinations of
definitions and utilization can increase in the
system of great programmers.

The generation of case test
The definition-utilization associations,
created as a result of a data flux analysis,
identify a set of testing cases necessary to the
performing of an interclass testing. A testing-
case, corresponding to his definition-
utilization association is a sequence of appeal
of a method which begins with a constructor
and includes the appeal of both methods
arisen as a result of a definition-utilization
association.
The symbolic interclass execution – as a
result of the previous phase a set of pairs of
methods which define and use the states of
the given objects will be provided. For each

Economy Informatics, 1-4/2005

60

pair, the first method contains a definition of
the object’s state whose it belongs to and
which is known as definition. In the same
way the second method contains a utilization
of the object’s state which can be either
direct or indirect, through an appeal of an
inspector method and which can be also
referred to as utilization. The symbolic
execution determines the conditions which
lead to the executions of the different ways
inside each method; attention is given to the
ways which contain the definition and
utilization identified to the previous phase. It
is applied to every method of each class by
using the principle of – a method in turn. The
symbolic execution allows the calculations of
the following elements for every way of each
method: the condition associated with the
executions way and the relations between the
in and out values of the method observing the
chosen way.
Generating the testing cases – is the last
phase of the described technique in
[KCMC00] and [JOER94] and it consists in
generating sequences of appeal of the method
which practice each defining-utilizing
association. In order to be very clear the
following notations are used:
• u - declaration which contains an
utilization of variable v;
• d - declaration which contains a definition
of variable v;
• mu – method which contains declarations
u;
• md – method which contains declarations
d;
• PCU – the condition of executing the way
of each mu appears;
• the method without definitions, which
accounts for variable v – it is a method which
does not determine a redefining a variable v;
• the way without definitions, which
accounts for variable v – it is a sequence of
methods without definitions which take into
account variable v.
Taking into consideration the defining and
utilizing association (d,u,v) for a C class, a
sequence of appeals of the methods which
performs the association must satisfy the
following properties [JOER94].

• to begin the appeal of the constructor of C
class;
• to contain an appeal of method md which
causes the execution of declaration d;
• to contain of an appeal of method mu
which causes the executions of declaration u;
• the sequence of appeals between md and
mu must be a well-defined way which
observes the declaration of variable v.
Corresponding to [KCMC00] it is to follow
the following actions in order to calculate the
new objective:
• the simplification of the current conditions
by eliminated those classes which are
satisfied by post conditions mu;
• the reunion of the simple conditions and
preconditions mk;
• the simplifications of the resulted
conditions where possible.
Because a series of adequate methods mk can
exist in each phase, the deductive process
devoted to achieving a defining-utilizing
association can be represented by a tree-like
structure. Each knot corresponds to a pair
made up of a method and a condition (a
predicate applied to his instance variables of
a class and to the parameters of a method).
The root of the tree cares ponds to the mu
method and to the PCU condition. The first
objective of the deductive process is to add
as knots which correspond to the md method
of the tree. The second objective is to add a
constructor to he sub tree root of md method.
The deductive method is over when the
second objective is fulfilled. A restriction to
the deductive process is that only the
methods without definitions and those which
take into consideration variable v, can be
added to the tree before fulfilling the first
objective (for example: the way between md
and mu must be well-defined).
The deductive process can be accomplished
due to the following 3 reasons:
• both objectives are satisfied, which means
that the process of searching a freezable
sequence of methods has been accomplished
successfully;
• the tree cannot be extended any longer,
and this means that the defining-utilizing
association will not be freezable;

Economy Informatics, 1-4/2005

61

• the depth of the tree reaches the extreme
limit before a fezabil sequence is to be found.
In order to improve the efficiency of the
deductive process the use of the heuristic
methods is recommended. First of all, the
deductive tree’s dimension is reduced by
cleaning the sub trees whose roots have
conditions which imply preconditions. This
desideratum is achieved by avoiding the
further exploration of this kinds of sub trees
where they correspond to other methods md
or other constructors and their inclusions in
the tree represents top priority objective of
the deductive process.
Secondly, the insertion of a knot
corresponding to the responsible method for
defining (for example mad) is advised as soon
as possible the unique successor.

Conclusions
The technique of building the tree described
in this paper is based on the use of the
automatic deduction. In situation of the
existence of an automatic technique of
deduction, such a solution subjected to
constraints, could fail during the operation of
copying which use complex expressions. At
present, there are many efficient ways of
eliminating the constraints which allow the
efficient maneuvering of some extended sets
of expressions and this makes possible for
the appear failure to be overloaded due to the
intervening necessities on behold of the
utilizes.

References
[HARR94] - Harrold M.J. and Rothermel G.,
"Performing data flow testing on classes", In
2nd ACM-SIGSOFT Symposium on the
foundations of software engineering, ACM-
SIGSOFT, December 1994, pp.154–163;
[JOER94] - Jorgensen P. and Erickson C.,
"Object-oriented integration testing",
Communications of the ACM, 37(9):30–38,
September 1994;
[KCMC00] - Kim S., Clark J.A., and
McDermid J. A., "Class mutation: mutation
testing for object-oriented programs". In
Proceedings of the NetObjectDays -
Conference on Object-Oriented Software
Systems, 2000;
[SPHI99] - Souter A., Pollock L., and Hisley
D., "Inter-class Def-Use analysis with partial
class representations", In Proceedings of the
ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and
Engineering, vol. 24 of Software Engineering
Notes (SEN), September 1999, pp. 47–56.

