Economy Informatics, 1-4/2005 27

Agile Software Project Management Methodologies

Prof. Constanta-Nicoleta BODEA, PhD
Economic Informatics Department, Academy of Economic Studies, Bucharest

Successfully project planning, coordinating and controlling in order to deal effectively with
projects sponsors, customers, unexpected risks and changing scope are difficult tasks even for
the most experienced project managers. Different surveys indicated that about half of the
software projects were considered total failures and only a few of them were successful. The
tight deadlines, volatile requirements and emerging technologies are the main reasons for
this lake of performance. This agile project environment requires an agile project manage-
ment. The paper presents the main characteristics of the agile software project management
approaches such as: MSF for Agile Software Development, Extreme Programming, Scrum,
Crystal, Feature Driven Development, DSDM.

Keywords: software development, project management methodology, agile project manage-
ment, XP, MSF for Agile Software Development.

Software project management meth-
odologies
Methodologies impose a disciplined process
upon software development with the aim of
making software development more predict-

able and more efficient. We can consider a
methodology containing ten basic elements:
techniques, tools, deliverables, teams, roles,
skills, activities standards, quality measures
and project values [1].

Activities Milestones
Plannin
W Team Values
Quality Processes Teams
Regression tests Project manager
Obj_ect model MBWA gnglyst
Project plan Use cases esigner
Use cases | Deliverable CRC cards Tester
\ Techniques Roles

JAD facilitatipn "~

Microsoft Project Ef‘r\g/ Dev. Java progranming ~
UML/ C++ MS Proiect Modelin >
OMT) Personality
Standards
\ Tools Skills

Fig. 1. Components of a project management methodology

A specific methodology is needed depending
on the project size (number of people being
coordinated), the criticality of the systems
being created and the priorities of the project.
For any point in the size/criticality space, a
scope of concerns to address is selected
(which project roles, activities, deliverables,
and standards to cover) and optimization cri-
teria are selected. Methodologies therefore
differ by the size, criticality, scope and opti-

mized quality. A larger methodology (with
more control elements) is needed when more
people are involved. Communication load
raises as the number of people involved in-
creases. Since methodology is a matter of
coordinating the people and managing the
communication, its size must also rise, as the
number of roles and deliverables types in-
crease [2].

Considering the project deliverables critical-

28

Economy Informatics, 1-4/2005

ity the following four zones we can identify:
e Loss of comfort means that with a system
failure, people will have to go and do more
work by hand, or call each other and repair a
miscommunication. Examples might include
purchase support systems and corporate in-
frastructure programs.

e Loss of discretionary moneys zone if the
loss of money or related valuables is merely
uncomfortable

e Loss of irreplaceable moneys zone if the
loss of moneys or related valuables has effect
corresponding to going bankrupt.

o Loss of life zone if people are likely to die
from a system malfunction.

For a project with higher criticality more
visible correctness (greater density) is re-
quired. Density means more precision in the
artifacts, with tighter reviews and less toler-
ance.

snxall N

Prohlem size amenahle
to attack by N people

Methodolbgy Weight

Fig. 2. Methodology weight and problem
size

"Weight is cost": a relatively small increase
in methodology size or specific density adds
a relatively large amount to the cost of the
project. With fewer people, less methodology
is needed; with less methodology, the people
work more efficiently. Working more effi-
ciently, they can successfully address a larger
problem. When more people are put onto a
project, they need a heavier methodology to
coordinate their work. The heavier method-
ology lowers their productivity, so more peo-
ple are needed on the project. Since method-
ology size grows slower than project size,
eventually they get to a point where they can
solve the problem and manage the coordina-
tion activities. This does not mean that a
small team can necessarily solve a larger

problem than a large team. It does mean
there may be an area of overlap, where a
small team with a light methodology can
solve the same problem as a larger team with
a heavier methodology (figure 2).

2. The Agile Approach

The agile approach started in 1994 with some
trials of semi-formal agile methodologies,
such as RAD, DSDM, XP, Crystal, Scrum.
These methodologies are based on agile
methods. Agile methods are adaptive rather
than predictive. Engineering methods tend to
try to plan out a large part of the software
process in great detail for a long span of
time, this works well until things change. So
their nature is to resist change. The agile
methods, however, are waiting for change.
Agile methods are people-oriented rather
than process-oriented. The goal of engineer-
ing methods is to define a process that will
work well whoever happens to be using it.
Agile methods assert that no process will
ever make up the skill of the development
team, so the role of a process is to support the
development team in their work.

The declaration of principles and values in
the agile approach is known as the Agile
Software Development Manifesto, launched
in 2001, after a two day workshop at Snow-
bird Utah (figure 3). A non-profit organiza-
tion the Agile Alliance was set up to promote
knowledge and discussion of all the agile
methods.

Applying these principles creates the founda-
tion for managing IT projects in an agile ap-
proach. The basic characteristics of this ap-
proach are the following:

e Assume simplicity. As the project evolves
it should be assumed that the simplest solu-
tion is the best solution. Overbuilding the
system or any artifact of the project must be
avoided.

e Embrace change. Since The stakeholder
understanding of the requirements will
change over time. Project stakeholders them-
selves may change as the project makes pro-
gress. Project stakeholders may change their
point of view, which in turn will change the
goals and success criteria of the project man-
agement effort.

Economy Informatics, 1-4/2005

29

¢ Incremental change — the pressure to get it
right the first time can overwhelm the best
project manager. Instead of futilely trying to
develop an all encompassing project plan
from the start, put a stake in the ground by
developing a small portion of the system, or
even a high-level model of a larger portion
of the system, and evolves this portion over

time. Or simply discard it when you no
longer need it in an incremental manner.

e Maximize stakeholder value. The project
stakeholders are investing resources (time,
money, facilities) to have a system deployed
that meets their needs. Stakeholders expect
that their investment to be applied in the best
way.

“We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over Processes and Tools.

Working software over Comprehensive documentation.
Customer collaboration over Contract negotiation.

Responding to change over Following a plan.

That is, while there is value in the items on the right, we value the items on the left more.”

Fig. 3. Agile Software Development Manifesto

e Manage with a purpose Identify a valid
purpose for creating the artifact and the audi-
ence for that artifact. This principle also ap-
plies to a change to existing artifacts.

¢ Rapid feedback. The time between an ac-
tion and the feedback on that action must be
minimized. Work closely with the stake-
holders, to understand the requirements, to
analyze those requirements, and develop an
actionable plan, which provides numerous
opportunities for feedback.

e Working software is the primary goal of
the project. The goal of any software project
is to produce software that meets the needs of

the project stakeholders. The goal is not to
produce extraneous documentation, man-
agement artifacts or models of these artifacts.
3. Some Agile Software Project Manage-
ment Methodologies

The agile approach focuses on: talent & skill
(fewer better people), proximity (direct and
face-to-face communication), less paper,
more tacit / verbal communication, just-in-
time requirements and design, frequent De-
livery (incremental development), reflection,
quality in work. So, the people are very close
related to the agile methodologies (figure 4).

. ActivitieS | Milestones / Personality)

Planning
/ Testin
;
,

1
Y 1
Team Values N :' ,
\\ 1 // \
1
A

/) Quality Processes

Teams AR ,

," Regression tests
." Object model IMBWA

Project plan Use cases
] Use cases | Deliverable CRC cards
\ = \ Techniques

7/

Project manager,”

Analyst .
. e

Designer 7

Tester .*

Roles

\ : . Envy/Dev

i JAD facilitatipn

N Microsoft Project P ' Java progrgimming K
UML/ C++ : Modelin ,
OMT MS Project
Standards
\ Tools Skills e

Fig. 4. Components of an agile project management methodology

30

Economy Informatics, 1-4/2005

3.1 Extreme Programming (XP) method-
ology

The roots of XP lie in the Smalltalk commu-
nity, in the close collaboration of Kent Beck
and Ward Cunningham in the late 1980's.
Both of them refined their practices on nu-
merous projects during the early 90's, extend-
ing their ideas of a software development ap-
proach that was both adaptive and people-
oriented. The crucial step from informal
practice to a methodology occurred in the
spring of 1996. Kent was asked to review the
progress of the C3 payroll project for Chrys-
ler. The project was being carried out in
Smalltalk by a contracting company and was
in trouble. Due to the low quality of the code
base, Kent recommended throwing out the
entire code base and starting from scratch.
The project then restarted under his leader-
ship. XP begins with four values: Communi-
cation, Feedback, Simplicity, and Courage. It
then builds up to a dozen practices which XP
projects should follow. Many of these prac-
tices are old, tried and tested techniques, yet
often forgotten by many, including most
planned processes. As well as resurrecting
these techniques, XP weaves them into a
synergistic whole where each one is rein-
forced by the others. It is a strong emphasis
on testing. While all processes mention test-
ing, most do so with a pretty low emphasis.
However XP puts testing at the foundation of
development, with every programmer writing
tests as they write their production code. The
tests are integrated into a continuous integra-
tion and build process which yields a highly
stable platform for future development.

On this platform XP builds an evolutionary
design process that relies on refactoring a
simple base system with every iteration. All
design is centered on the current iteration
with no design done for anticipated future
needs. The result is a design process that is
disciplined, yet startling, combining disci-
pline with adaptivity in a way that arguably
makes it the most well developed of all the
adaptive methodologies.

3.2 Crystal methodologies

Alistair developed this family of methodolo-
gies considering that different kinds of pro-

jects require different kinds of methodolo-
gies. The Crystals share a human orientation
with XP, but this people-centeredness is done
in a different way. Alistair considers that
people find it hard to follow a disciplined
process, thus rather than follow XP's high
discipline; Alistair explores the least disci-
plined methodology that could still succeed,
consciously trading off productivity for ease
of execution. He thus considers that although
Crystal is less productive than XP, more
people will be able to follow it.

Alistair also puts a lot of weight in end of it-
eration reviews, thus encouraging the process
to be self-improving. His assertion is that it-
erative development is there to find problems
early, and then to enable people to correct
them. This places more emphasis on people
monitoring their process and tuning it as they
develop.

3.3 Scrum

Scrum has been around for a while in object-
oriented circles. It focuses on the fact that de-
fined and repeatable processes only work for
tackling defined and repeatable problems
with defined and repeatable people in defined
and repeatable environments.

Scrum divides a project into iterations (which
they call sprints) of 30 days. Before you be-
gin a sprint you define the functionality re-
quired for that sprint and then leave the team
to deliver it. The point is to stabilize the re-
quirements during the sprint.

However management does not disengage
during the sprint. Every day the team holds a
short (fifteen minute) meeting, called a
scrum, where the team runs through what it
will do in the next day. In particular they sur-
face to the management blocks: impediments
to progress that are getting in the way that
management needs to resolve. They also re-
port on what's been done so management
gets a daily update of where the project is.
Scrum literature focuses mainly on the itera-
tive planning and tracking process. It's very
close to the other agile in many respects and
should work well with the coding practices
from XP.

3.4 MSF for Agile Software Development
MSF provides a customized and scalable set

Economy Informatics, 1-4/2005

31

of software development guidelines for ap-
plication development improvement ([5]).
MSF incorporates both agile and formal ap-
proaches, and then allows the user to select
the most suitable path. MSF's flexible
framework can be adapted to meet the needs
of any project, regardless of size or complex-
ity.

The MSF philosophy holds that there is no
single structure or process that optimally ap-
plies to the requirements and environments
for all projects. MSF provides this guidance
without imposing prescriptive detail and al-
lows the user to customize the content pro-
vided. MSF components can be applied indi-
vidually or collectively to improve success
rates for the many types of projects. MSF
guidance focuses on managing the "people
and process." Because the needs and prac-
tices of software development teams are con-
stantly evolving, the materials gathered into
MSF are continually changing and expanding
to keep pace. Additionally, MSF interacts
with Microsoft Operations Framework
(MOF) to provide a smooth transition to the
operational environment, which is a require-
ment for long-term project success.

With MSF, process is not just documenta-
tion. It also manifests itself as actual tool be-
havior changes. When you chose the process
at project inception, you are also choosing
the workflow and work products, which then
drive how the system behaves. Support for
the software development life cycle process
(SDLC) is built-in, which makes for seamless
workflow support. By integrating process
into the tools team members use on a daily
basis, MSF lowers the barrier to adopting
process and enables the automatic collection
of cross-functional project metrics without
the overhead associated with manual report-
ing.

The following elements of MSF are custom-
izable:

e Process Guidance

e [teration structure

e Entry criteria and exit criteria views

e Work item type definitions and rules (ac-
tivities and work products)

e Work item queries

Source check-in policies

Role clusters and security groups
Document templates (Excel and Word)
Microsoft Project templates

Reports

Project portal /SharePoint site template
MSF uses methodology templates to define
the process that individual projects follow.
There is no universal process that works for
all organizations, or even all projects within
an organization. To address this, MSF pro-
vides a flexible toolset that works with both
agile and formal processes. Microsoft's
Global Solution Integrator partners provide
their own product consumable methodology
templates; or, you can create your own. Proc-
ess extensibility allows customization of
work item types, check-in policies, custom
reports and project management templates.

Conclusions

Getting projects faster is a universal desire of
management. The reality of project manage-
ment is that we never really have the time to
create perfect plans, to analyze all the op-
tions. Agile approach provides some methods
for project management to become more ef-
fective. These methods need to be taken and
customized to the unique business environ-
ment of the project.

References

1. Alistair C. A Methodology Per Project,
(arc@acm.org), Humans and Technology.

2. Harrison, N., Coplien, J, "Patterns of pro-
ductive software organizations", Bell Labs
Technical Journal, summer, 1996.

3. Jeffries, R., Beck, K., Extreme Program-
ming, http://armaties.com/extreme.html.

4. Fowler M, The New Methodology, Martin
Fowler.com

5. Microsoft, Visual Studio 2005 Team Sys-
tem: Microsoft Solutions Framework, 2004,
www.Microsoft.com .

6. http://crystalmethodologies.org/

