
Economy Informatics, 1-4/2005

49

Parallel Rank Sort

Assist. Lecturer Felician ALECU
Economy Informatics Department, A.S.E. Bucharest

One of the fundamental problems of computer science is ordering a list of items. There are a
lot of solutions for this problem, known as sorting algorithms. Some sorting algorithms are
simple and intuitive but others are extremely complicated but produce lightening-fast results.
The purpose of this paper is to present a parallel bubble sort algorithm that has a linear
complexity, much better than the complexity level of the fastest known sequential sorting al-
gorithm.
Keywords: Parallel and sequential rank sort algorithm, parallel processing, efficiency, com-
plexity level, big-O notation.

orting is one of the most common opera-
tions performed by a computer. Basi-

cally, it is a permutation function which op-
erates on n elements. Internal sorting can be
used when the number of elements is small
enough to fit into the main memory. If n is
very large and it doesn’t fit the main memory
then auxiliary storage must be used in order
to complete the sorting operation.
The sorting methods can be divided into two
classes by the complexity of the algorithms
used. The complexity of a sorting algorithm
is generally written in the big-O notation and
it is expressed based on the size of sets the
algorithm is run against. The big-O notation
represents a theoretical framework upon
which we can compare two or more algo-
rithms. The two classes of sorting algorithms
are O(n2), which includes the bubble, inser-

tion, selection, shell, rank sorts and O(n log
n), which includes the heap, merge, quick
sorts.
For each element of the list to be sorted, the
Rank Sort algorithm is computing the total
number of elements that are lower than that
number. This value is called the rank of the
element and to compute it the algorithm
needs to compare the element with all other
values form the list. In a fully sorted list in
increasing numerical order, the rank of each
element will just be its actual position in the
list. Finally, the algorithm uses the rank of
each element to place it in its proper sorted
position.
The following table (Tab. 1) shows the rank
of each element form a list (unsorted and
sorted).

Unsorted List Rank Sorted List Rank
55 3 33 1
99 6 44 2
44 2 55 3
33 1 77 4
88 5 88 5
77 4 99 6

Tab. 1 – Rank of the elements

The sequential version of the Rank Sort algo-
rithm is presented below (Alg. 1). The pro-
gramming language used to describe the al-
gorithm is MultiPascal, a parallel version of
the classical Pascal language. The MultiPas-
cal language was developed by Bruce P. Les-

ter.
The PutInPlace procedure finds the rank of
an element by looping through the values
from the list. After the rank is computed, the
procedure puts the element in its final sorted
position.

S

Economy Informatics, 1-4/2005

50

procedure PutInPlace
(var x:vector;var y:vector;n:integer;pos:integer);
var
 i,rank:integer;
begin
 rank:=1;
 for i:=1 to n do
 if x[i]<x[pos] then
 rank:=rank+1;
 y[rank]:=x[pos];
end;

procedure RankSort_Sequential
(var x:vector;var y:vector;n:integer);
var
 i:integer;
begin
 for i:=1 to n do
 PutInPlace(x,y,n,i);
end;

Alg. 1 – The sequential version of the Rank Sort algorithm

The sorting algorithm ends its execution after
a number of n iterations of the main loop. At
each step, the program performs a number of
comparisons equal with n, the number of the
elements from the list. Based on these results
we can conclude that the complexity level of
the algorithm for a common array is O(n2),
no matter of the initial existing order of the
elements from the list. The algorithm doesn’t
need any kind of exchanges because the final
position of an element is computed based on
its rank.
The parallel version of the Rank Sort algo-
rithm can be easily obtained by computing
the rank of each element from the list inde-
pendently on a different processor. Processor

number 1 can compute the rank of the first
element by comparing it with every other
element in the list. In the same time, proces-
sor number 2 can simultaneously compute
the rank of the 2nd element from list and so
on. If there are n processors in the parallel
system, each processor i can be assigned to
compute the rank of the element number i in
the list.
Also, the parallel Rank Sort algorithm is us-
ing two arrays (unsorted and sorted lists)
stored in the shared memory area. In such a
way the lists will be available to all the proc-
essors from the system in the same time (Fig.
1).

Unsorted
List

Sorted
List

Element 1:
Compute rank
Copy it to sorted list

Processor 1

Element 2:
Compute rank
Copy it to sorted list

Processor 2

Element n:
Compute rank
Copy it to sorted list

Processor n

…

Fig. 1 – Parallel rank sort

Economy Informatics, 1-4/2005

51

The parallel version of the Rank Sort algorithm is presented below (Alg. 2).
procedure PutInPlace
(var x:vector;var y:vector;n:integer;pos:integer);
var
 i,rank:integer;
begin
 rank:=1;
 for i:=1 to n do
 if x[i]<x[pos] then
 rank:=rank+1;
 y[rank]:=x[pos];
end;

procedure RankSort_Parallel
(var x:vector;var y:vector;n:integer);
var
 i:integer;
begin
 forall i:=1 to n do
 PutInPlace(x,y,n,i);
end;

Alg. 2 – The parallel version of the Rank Sort algorithm

The PutInPlace procedure is executed in par-
allel for n times and it has a complexity level
of O(n). Because the outer loop iterations are
executed in parallel, the complexity level of
the parallel version of the Rank Sort algo-
rithm will become equal with O(n), where n
represents the number of the elements in the
list. This is superior to the fastest known se-
quential sorting algorithms, which are all O(n
logn).
If the number p of processors in the system is
less than the number of list elements n, the

total execution time become O(n2/p) and it
reduces to O(n) when p = n.
The values of the most important parameters
measuring the performance of a parallel pro-
gram (S – speedup, E – efficiency, Cp – par-
allel cost, Csupl – supplementary cost of par-
allel execution) are listed below:

)(log
)(

)log(nO
nO

nnO
T
T

S
p

s ===

⎟
⎠
⎞

⎜
⎝
⎛===

n
nO

nO
nO

p
SE log

)(
)(log

)()()(2nOnOnOTpC pp =⋅=⋅=

)()log()(22
sup nOnnOnOTTpCCC spspl =−=−⋅=−=

Analyzing these parameters we can conclude
the following: the sequential version of the
Rank Sort algorithm is very useful because
its simplicity, not its efficiency. The parallel
version remains simple but it is also very
fast, having a complexity level equal with
O(n).

References
1. A. Inselberg, Parallel Coordinates,
Springer, 2004
2. R. Wyrzykowski, Parallel Processing
And Applied Mathematics, Springer, 2004

3. J. Joseph, C. Fellenstein, Grid Comput-
ing, Prentice Hall, 2003
4. Gh. Dodescu, B. Oancea, M. Răceanu,
Parallel Processing, Economic Publishing
House, Bucharest, 2002
5. H. F. Jordan, H. E. Jordan, Fundamentals
of Parallel Computing, Prentice Hall, 2002
6. R. Sedgewick, Algorithms, Addison-
Wesley, 1998
7. G. W. Sabot, High Performance Comput-
ing, Addison-Wesley, 1995

