
Economy Informatics, 1-4/2005

85

Software Engineering Approaches for Design of Multi-agent Systems

Lect. Gheorghe Cosmin SILAGHI, PhD
Babeş-Bolyai University Cluj-Napoca, gsilaghi@econ.ubbcluj.ro

This paper presents 2 software engineering approaches for design of multi-agent systems. The
goal of the paper is to evaluate the usefulness of such methodologies regarding agent systems
design. For each method, the methodology map is described, together with its most important
features. We conclude that software engineering approaches are worth for consideration
when moving the agent system into in-house development, as the most used agent develop-
ment technologies are still object-oriented.
Keywords: agent systems, design, agent-oriented software engineering.

Introduction
Five outgoing trends have marked the

history of computing, during the last decade:
ubiquity, interconnection, intelligence, dele-
gation and human orientation. Computer sys-
tems no longer standalone, but are networked
into large distributed systems. Internet is an
obvious example, but networking is spread-
ing its ever-growing tentacles. Since distrib-
uted and concurrent systems have become
the norm, some researchers are putting to-
ward theoretical models that portray comput-
ing as primarily a process of interaction.
Delegation means what computers are doing
for us without our intervention. Humans are
giving control to computers even in safety
and critical tasks. Delegation requires some
sort of intelligence in the software and hard-
ware entities that acts for us, with or without
our request.
In this context, a new emergent field arose in
artificial intelligence: agent systems. An
agent is a computer system that is capable of
independent (autonomous) action on behalf
of its user or owner [Wooldridge 2002], fig-
uring out what needs to be done to satisfy the
design objectives, rather than constantly be-
ing told. Therefore, the study of how we can
build multi-agent systems becomes of great
interest. Design of multi-agent systems will
represent the study goal of this paper.
[Silaghi 2004] presented the most important
knowledge-engineering approaches for de-
sign of multi-agent systems. We concluded
that such methods give a good formalization
and put the agent system under construction

on a sound foundation. Knowledge engineer-
ing approaches are worth for consideration
for prototyping reasons, to validate and ver-
ify concepts and features of the new system.
But, for the design and development of large-
scale agent systems, other agent-based soft-
ware engineering approaches are still needed.
This paper will review software engineering
approaches for multi-agent system design.
We will describe and evaluate two software-
engineering based methodologies: MaSE and
AUML. Our efforts try to answer the ques-
tion regarding which are the design method-
ologies that should be used when designing
large-scale, commercial agent systems.
The paper develops as it follows. Section 2
will introduce some basic concepts and re-
quirements about software engineering of
multi-agent systems. Section 3 and 4 will
present each methodology under study, to-
gether with a short evaluation according with
some well-accepted principles. We will con-
clude in section 5 with our opinion about de-
veloping agent-based systems with the ana-
lyzed methodologies.
2. Agent-oriented software engineering
Software engineering is “the application of a
systematic, disciplined, quantifiable approach
to the development, operation, and mainte-
nance of software” [IEEE 1990]. It is con-
cerned with developing large applications,
covering not only the technical aspects of
building software systems, but also manage-
ment issues. As agent-based computing in-
troduces novel abstractions; agent – oriented

1

Economy Informatics, 1-4/2005

86

software engineering is required to sustain
them.
In the strong artificial intelligence point of
view, a multi-agent system is a society of in-
dividuals (agents) that interact by exchanging
knowledge and by negotiating with each
other to achieve either their own interest or
some global goal [Wooldridge 2002]. From
the weak software engineering viewpoint, a
multi-agent system is a software system
made up of multiple independent and encap-
sulated loci of control (agents) interacting
with each other in a specific application con-
text [Singh 1994]. The software-engineering
viewpoint focuses on the characteristics of
agents that have impact on software devel-
opment, like concurrency, interaction, loci of
control. Intelligence can be seen as a peculiar
form of control independence, conversation
as a peculiar form of interaction. This view-
point is more general, does not exclude the
strong AI opinion. There are software sys-
tems that were not conceived as agent-based
systems but can be interpreted and character-
ized in terms of the weak notion of multi-
agent system.
Agent-oriented software engineering should
deal with abstractions like agents, environ-
ment, local context etc. These abstractions
will be translated in concrete entities of the
software system. Methods of agent-oriented
methodology should focus on realizing the
properties of agent systems, as other method-
ologies do not give specific tools for these.
Agent-oriented methodologies could be di-
vided in two main categories: knowledge en-
gineering approaches and software engineer-
ing approaches.
Knowledge engineering is the process of elic-
iting, structuring, formalizing and operation-
alizing information and knowledge. The
main advantage of this approach is that it
provides techniques for modeling the agent’s
knowledge. The main drawback is the fact
that it does not address software engineering
criteria. Examples of knowledge engineering
methodologies are GAIA [Wooldridge 2000],
DESIRE [Brazier 1997], MAS-
CommonKASD [Iglesias 1996] etc. We ana-
lyzed GAIA and DESIRE in [Silaghi 2004].

Software engineering approaches are focused
on the object-oriented paradigm. Some au-
thors claim that agents are active objects
[Shoham 1991] and therefore, object-oriented
methodologies are suitable for building agent
systems. Software engineering approaches
are very popular, using the same tools like
the most software engineering methodolo-
gies. Therefore, these types of methods are
used for building commercial agent systems,
as they provide with well-known develop-
ment patterns. Examples of software engi-
neering methodologies are AUML [Odell
2000], MESSAGE/UML – EURESCOM1
project [EURESCOM 2001], MaSE
[DeLoach 1999], OPM/MAS [Sturm 2003],
etc. In this paper we will detail MaSE and
AUML methodologies.
3. MaSE
MaSE (Multi-agent Systems Engineering) is
an attempt on how to engineer practical
multi-agent system. It provides a framework
and a complete lifecycle methodology for
analyzing, designing and developing hetero-
geneous multi-agent systems. MaSE is a fur-
ther abstraction of the object-oriented para-
digm where agents are at an even high level
of abstractions than objects. MaSE addresses
only closed systems; an agent that partici-
pates in the system communication protocols
encapsulates all external interfaces [Wood
2001]. The methodology does not consider
dynamic systems where agents can be cre-
ated, destroyed or moved during execution.
Inter-agent conversations are assumed to be
one-to-one, as opposed to multicast. Systems
designed with MaSE are not very large; the
target is 10 or less software agent classes.
3.1. MaSE methodology map
Inspired from traditional object-oriented
software engineering, MaSE approaches a
cascading development model. Figure 1
draws the detailed methodology map of
MaSE [Wood 2001].
MaSE is a goal-based methodology. The
analysis is role-directed. Roles and tasks cap-
ture required organization, action and inter-

1 http://www.eurescom.de/public/projects/P900-
series/P907/default.asp

Economy Informatics, 1-4/2005

87

actions. Roles are played by agent classes
that capture the organization. Agent design
captures the roles and tasks. Therefore, con-
versations capture interaction and actions are
captured via methods.
Capturing goals takes the initial system
specification and transforms it into a struc-
tured set of system goals, building a Goal Hi-
erarchy diagram. The goals are structured
into a form (the diagram) that can be passed
on and used in the design phase. In the Goal
Hierarchy diagram, goals are organized by
importance.

Requirements

Goal
Hierarchy

Use Cases

Sequence
Diagrams

RolesConcurrent
Tasks

Agent classes

Conversations

Agent
Architecture

Deployment
Diagrams

Capturing
Goals

Applying
Use cases

Refining roles

Creating
Agent classes

Constructing
conversations

Assembling
Agent classes

System design

A
nalysis

D
esign

Figure 1. MaSE detailed methodology map

Use cases are drawn from the system re-
quirements. They are narrative descriptions
of a sequence of events that define desired
system behavior. A sequence diagram is used
to determine the minimum set of messages
that must be passed between roles. Each
message should have a corresponding com-
munication path between the related roles. A
communication path between roles played by
separate agent classes means that a conversa-
tion must exist between the two agent
classes, in order to pass the message. MaSE
methodology [Wood 2001] recommends cre-
ating at least one sequence diagram from a

use case. If there are several possible scenar-
ios, multiple sequence diagrams should be
created.
Roles are the building blocks used to define
agent’s classes and capture system goals dur-
ing the design phase. A role is an abstract de-
scription of an entity’s expected function and
encapsulates the system goals that it has been
assigned the responsibility of fulfilling. The
general case of transformation of goals to
roles is one-to-one: each goal maps to a role.
Role definitions are captured in a traditional
Role Model. In the role model, lines between
roles denote possible communication paths.
These paths are derived from the sequence
diagram developed in the previous step.
When documenting a role, the goal number is
listed below the role name. Roles are denoted
by rectangles, while role tasks are denoted by
ovals. Lines between tasks denote communi-
cation protocols that occur between those
tasks. Arrows denote the initiator / responder
relationship. The concurrent tasks diagram
shows the precedence of identified role tasks.
Agent classes are identified from component
roles. The output of this phase is an Agent
Class diagram, which depicts agent classes
and the conversations between them. The
boxes represent agent classes, containing the
class name and the assigned roles. Lines with
arrows denote conversations. The primary
difference between the agent class diagram
and a corresponding object diagram is the
semantics of the relationship between com-
ponents. In the agent class diagram, relation-
ships define conversations, while in object
diagrams lines means associations. As a de-
sign recommendation, the designer may
combine multiple roles into a single agent
class. It is desirable to combine two roles that
share a high message traffic volume. When
determining what roles to combine, size and
frequency of communication are important,
not only the number of communication paths.
Constructing conversations step is closely
linked with the next one, assembling agents.
A MaSE conversation defines a coordination
protocol between two agents. A conversation
consists of two communication class dia-
grams one for initiator, one for responder. A

Economy Informatics, 1-4/2005

88

communication class diagram is a pair of fi-
nite state automaton that defines the conver-
sation states of two participant agent classes.
The syntax of a transition inside the automa-
ton follows the conventional UML notation.
Conversations must support and be consistent
with all sequence diagrams derived in an
early analysis phase. Conversations are built
by first adding all states and transitions that
can be derived from the sequence diagram
and from tasks. For the rest of the conversa-
tion diagram, the designed adds states and
transitions necessary to convey the required
messages and provide robust operation.
Assembling agent classes phase consists of
building internal of agent classes. A designer
may define internal components of an agent
from scratch or using pre-existing compo-
nents. Furthermore, components may have
sub-architectures containing other compo-
nents. Components are joined with inner and
outer agent connectors. Inner-agent connec-
tors define visibility between components.
Outer-agent connectors define connection
with external resources such as other agents,
sensors, databases.
The final step of MaSE – system design,
takes agent classes and creates actual agents
out of them. The Deployment diagram shows
the number, type and location of agents
within the system. Instantiating agents from
agent classes are similar with instantiating
objects from classes, in object-oriented pro-
gramming.
MaSE is concerned about code generation,
after deploying agents on the diagram. The
authors are content of the importance of this
last step, finishing the design methodology,
toward a running agent-based system. Fur-
ther research of the MaSE authors [DeLoach
2001], conducted toward a tool that supports
and helps system design with MaSE, and
contains a module that allows some code
generation.
3.2. MaSE evaluation
In this subsection we will evaluate MaSE
methodology, according with some criteria
well-accepted for agent systems. More pre-
cisely, we will check how MaSE fulfills the

properties, concepts and pragmatics of agent
theory.
In MaSE autonomy is expressed by the fact
that the role encapsulates its functionality.
Reactiveness is not expressed explicitly.
There is no explicit connection between the
event and the action taken. Yet, reactiveness
can be expressed using the conversation state
machines. Proactiveness is expressed by the
role’s tasks. These tasks are modeled using
finite state automaton. MaSE does not men-
tion about the social aspect of the system, ex-
cept for communication.
Besides agent properties, other software-
oriented features are considered. Therefore,
MaSE provides a very simple set of models
that enhance accessibility. MaSE supports in-
ternal verification and consistency checking
of the models. However, there are still some
cases where inconsistencies may occur. Re-
garding complexity management, there are
several layers of abstraction within MaSE:
agents, roles and tasks. There is no support of
managing the complexity of complex tasks
and roles. Modularity is supported within the
agent template diagram.
MaSE is adequate for creating new software,
reengineering and designing systems with re-
use components and prototyping. It covers
the entire lifecycle except for testing. The de-
liverables of MaSE are well-defined. Regard-
ing practical implementation issues, we no-
tice the presence of a case tool – agentTool,
the fact that MaSE is not coupled with any
architecture or programming language, being
a generally-purpose methodology for design-
ing multi-agent systems.
4. AUML
We should start by mentioning the fact that
the authors of AUML are scientists working
for Siemens research; then we could assume
that AUML efforts were raised out of some
commercial interest.
The Unified Modeling Language gained wide
acceptance for the representation of engineer-
ing artifacts in the object-oriented software
design. [Bauer 1999] sees agents as the next
step beyond objects and propose extensions
to UML in order to accommodate UML with
the distinctive requirements of agents. Agent

Economy Informatics, 1-4/2005

89

UML (AUML) is the proposed language in
this direction, being accepted as part of
FIPA2-99 standard.
4.1. AUML methodology map
AUML extends UML with the following is-
sues: a special organized agent class, the new
concept of role, the new Agent Interaction
Protocol Diagram. The classical diagrams of
UML still need to be considered during the
phases of the software product design. Table
1 describes the methodology map for AUML,
considering a “waterfall model” for system
implementation, with the following essential
stages: requirements gathering, system analy-
sis, system design and implementation.
Pluses mean that at a stage, a kind of diagram
needs to be created and consulted.
AUML introduces Agent Interaction Protocol
(AIP) diagrams. AIPs are a specific class of
software design patterns in that they describe
problems that occur frequently in multi-agent
systems and they describe the core of a reus-
able solution to that problem [Bauer 1999].
A definition of an AIP describes: (i) a com-
munication pattern with an allowed sequence
of messages between agents having different
roles and constraints on the content of the
messages, and (ii) a semantics that is consis-
tent with the communicative acts within a
communication pattern. Messages must sat-
isfy standardized communicative (speech)
acts that define the type and the content of
the messages (e.g. FIPA-ACL, KQML3). In-
teraction protocols are described by the new
introduced “(Agent Interaction) Protocol
Diagrams”.
Figure 2 depicts the protocol diagram for the
FIPA English-Auction Protocol [Bauer
1999]. In English auction, the auctioneer ini-
tially proposes a price lower than the ex-
pected market price and then, gradually,
raises the price. The communication starts
from the auctioneer side, informing the par-
ticipants that the auction has started (inform-
start-of-auction). Each time a new price is

2 FIPA is a non-profit organization aimed at producing
standards for the interoperation of heterogeneous
software agents; http://www.fipa.org
3 these notations represents agent-used languages for
encoding agent communication

announced (cfp-n message), the auctioneer
waits until a given deadline to see if any par-
ticipant signal its willingness to pay the pro-
posed price (propose message). If a partici-
pant does not understand the ontology or the
syntax of the cfp message, it replies with a
not-understood communicative act.

Initiator Participant

1 Inform-start-of-auction n

1 cfp-1 n

x

nx
1 (m=0) not-understood m

1 propose 1

1
x

reject-proposal

accept-proposal

1 2/cfp-2

cfp-2

n

1 1/inform-2 n

1 2/request 1

Initiator, Participant
inform-strart-of-auction

cfp-1, not-understood, propose,
accept-proposal, reject-proposal,

cfp-2, request,
inform

Figure 2. FIPA – English-auction protocol

Besides AIPs, AUML considers other exten-
sions, for representing agent concepts in
UML.
In UML, a role is an instance-focused term,
referring to a sole realization. In AUML an
agent role means a set of agents satisfying
distinguished properties, interfaces, service
descriptions or having a distinguished behav-
ior. Agents can perform various roles within
one interaction protocol; therefore, the im-
plementation of an agent can satisfy different
roles. A protocol can be defined at the level
of concrete agent instances or for a set of
agents satisfying a distinguished role or class.
Such an agent is called agent of a given role
and class.

Economy Informatics, 1-4/2005

90

Diagram \ stage Requirements Analysis Design Implementation
Class + +
Object + +
Component + +
Deployment +
Sequence + + +
Collaboration + + +
Use case +
State chart + +
Activity + +
Package + +
Model + +
Subsystem + +
Extension mechanism + +
Agent Interaction Protocol + + +

Table 1. AUML methodology map
The agent lifeline in the protocol diagram de-
fines the time period during which an agent
exists. The lifeline may split up into two or
more lifelines to show AND and OR parallel-
ism decisions, corresponding to branches in
the message flow. Figure 2 presented only
the XOR connector type, when only one
message type could be derived at a moment.
The sending of messages can be done either
in parallel or as a decision between different
communicative acts. Receiving different
communicative acts usually results in differ-
ent behavior and different answers. That
means the behavior of an agent role depends
on the received message. Therefore, the
thread of interaction, i.e. the processing of
the incoming messages, has to be split up
into different threads. It results that the life-
line of an agent role is split and the threads of
interaction define the reaction to received
messages. The thread of interaction shows
the period during which an agent role is per-
forming some tasks and a reaction to an in-
coming message.
Sending a communicative act conveys infor-
mation and entails the sender’s expectation
that the receiver will react according with the
semantics of the communicative act. This
semantic meaning of a message represents
another extension for the UML concept of
message.
Agent Interaction protocol diagram represent
the most important extension, being defined
only in AUML. Class diagrams in AUML
look similar with the ones in UML, with the
difference that they describe agent roles or

agent classes. Class diagrams represent the
knowledge structure of the agent system,
with the composition relationship as a defin-
ing element.
4.2. AUML evaluation
In this subsection we will evaluate AUML
according with the same principles as for
MaSE. More precisely, we will check how
AUML fulfills the properties, concepts and
pragmatics of agent theory.
In AUML autonomy is expressed within the
agent class. We may observe that class de-
scription of UML could be seen as a suffi-
cient formalism for describing the autonomy
of agents. Reactiveness and proactiveness are
expressed by the set of behavioral diagrams.
In AUML there is no special treatment of so-
ciality. Regarding reactiveness and proac-
tiveness, AUML extends UML with the in-
troduction of the agent interaction protocol
diagrams, which constitutes as templates for
communicative acts.
Regarding software-oriented principles,
AUML is not a language yet; there are no
formal definitions. AUML states only some
extensions to UML and assumes that all
UML forms are adopted. Modularity is sup-
ported by UML (and by object-oriented
paradigm), while complexity management is
supported via packages, models, and subsys-
tems defined in UML. AUML as a descen-
dant of UML can use the techniques of UML
for rapid prototyping. It can provide code
skeleton or working applications through
state charts. AUML can make advantage of
existing UML tools capabilities.

Economy Informatics, 1-4/2005

91

AUML is adequate for creating new soft-
ware, reengineering, reverse engineering,
prototyping, designing systems with reuse
components. All these advantages come from
the UML. Regarding lifecycle coverage,
RUP is probably the methodology to be used
when adopting AUML because it provides a
rich set of guidelines for performing the de-
velopment states’ activities. The deliverables
of AUML and RUP are well defined.
The required knowledge of the designer is
minimal. A person with object-oriented
knowledge can easily move to agents.
AUML is not targeted at a specific language
or architecture. AUML is mainly recom-
mended for computational-oriented applica-
tions; however it can handle knowledge-
based applications as well.
5. Conclusions
This paper presents MaSE and AUML as
representative methodologies for software-
engineering based approaches for design of
agent systems. Section 2 introduced agent-
oriented software engineering as required
when dealing with the new concepts of agent
theory when building software systems. Sec-
tion 3 and 4 entered the details of the ana-
lyzed methodologies, presenting their meth-
odology map and a short evaluation with re-
spect to some well-accepted criteria.
MaSE succeeds in creating a useful context
and framework for building agent systems.
Taking MaSE guidelines, a small team of de-
velopers can bring a system to a functional,
running state. The analysis and the design
can pass from the outer conceptual level to a
micro inner level of the components. Specifi-
cation deliverables for the internal agent rep-
resentations are provided (a designer can
specify sequence and state diagrams, agent
interaction and composition). In order to
achieve these performances, MaSE left the
agent theory and agent concepts un-attained,
and proposed its own substitutes. We think
that this approach is worth to be considered,
as MaSE succeeded in fulfilling the most im-
portant features of agent theory. However,
from the theoretical point of view, MaSE
does not provide functionality validation and
verification.

As MaSE was build for a specific project in-
side US Air Force, and at the moment of
publishing, other software engineering efforts
were focused toward standardization of ob-
ject-oriented modeling, MaSE did not be-
come popular. It is difficult to propose in a
software house a MaSE approach for a pro-
ject, even if it is an agent-based one. MaSE
will remain a good choice for the moment of
time when agent systems will overpasses ob-
ject-oriented approaches.
AUML intends to anchor agent-based system
development into an object-oriented frame-
work. Their authors observed the need of the
industry to be able to reuse old development
patterns even when adopting new and chal-
lenging technologies. Therefore, instead of
proposing a new approach to deal with agent
technology, they chose to extend an existing
and wide-adopted methodology. But they
provided only with some extensions to UML,
in order to be able to represent the new con-
cepts of agency, and they left unachieved the
definition of the software engineering proc-
ess, integrating AUML in RUP or other ob-
ject-oriented software engineering methodol-
ogy.
Therefore, AUML is a different kind of ap-
proach, as it focuses on extending an existing
and wide-accepted approach for agents. But,
it can become useless, as when starting the
analysis and design for a system with object-
oriented tools, a designed can ignore the
agent extensions and use only object-oriented
building blocks. Therefore, we think that
AUML is an attempt to move closely with
the practical issues regarding system design
and development and it put under question
the theoretical aspects of the agency, the
logical and knowledge-based foundation.
Software-engineering based approaches
come closer with the need of the industry for
a useful formalism in order to approach
large-scale agent systems development. As
the most popular agent development tools
(JADE, FIPA-OS, IBM-Aglets) are object-
oriented, AUML constitutes the description
language used to represent agent-specific
concepts. Therefore, one who intends to ap-
proach building multi-agent systems for spe-

Economy Informatics, 1-4/2005

92

cific problems should consider software-
oriented design methodologies.
We recommend a dual approach: when pro-
totyping and in the first iterations of the
agent-based system a knowledge-based ap-
proach [Silaghi 2004] or MaSE is worth for
consideration. When moving the system into
in-house development, considering the up-to-
date development technologies, AUML is the
required design language.

References
[Bauer 1999] Bernhard Bauer, “Extending
UML for the Specifications of Agent Interac-
tion Protocols”, submission for the 6th Call for
Proposal of FIPA and revised part of FIPA-99,
response to OMG Analysis & Design Task
Force UML 2.0, December 1999
[Brazier 1997] F. M. T. Brazier, B. Dunin-
Keplicz, N. Jennings, J. Treur, “Desire: Model-
ing Multi-Agent Systems in A Compositional
Formal Framework”, International Journal of
Cooperative Information Systems, vol. 6, 1997
[DeLoach 1999] Scott DeLoach, “Multi-
agent System Engineering: A Methodology and
Language for Designing Agent Systems”, in
Proceedings of Agent Oriented Information
Systems '99 (AOIS'99), Seattle, May 1999
[DeLoach 2001] Scott DeLoach, Mark
Wood, “Developing Multi-agent Systems with
agentTool”, in Intelligent Agents VII. Agent
Theories Architectures and Languages, 7th In-
ternational Workshop, Boston, USA, July
2000, published in LNCS, Vol. 1986, Springer
Verlag, Berlin, 2001
[EURESCOM 2001] EURESCOM project
907, “MESSAGE: Methodology for Engineer-
ing Systems of Software Agents – Methodol-
ogy for Agent-Oriented Software Engineer-
ing”, Richard Evans Ed. EURESCOM, Sep-
tember 2001
[Iglesias 1996] C. A. Iglesias, M.
Garijo, J. C. Gonzàlez, J. R. Velasco, “A
Methodological Proposal for Multi-agent Sys-
tems Development extending Common-
KADS”, in Proceedings of 10th Knowledge Ac-
quisition for Knowledge-Based Systems Work-
shop, Alberta, Canada, 1996
[Odell 2000] J. Odell, H.V.D. Parunak, B.
Bauer, “Extending UML for Agents” In G.
Wagner, Y. Lesperance, and E. Yu editors,
Proceedings of the Agent Oriented Information

Systems Workshop (AOIS) at the 17th National
Conference on Artificial Intelligence, Austin,
Texas, 2000
[Shoham 1991] Y. Shoham, "AGENT0: A
Simple Agent Language and its Interpreter", in
Proceedings of the 9th National Conference on
Artificial Intelligence, AAAI-91, Eindhoven,
The Netherlands, 1991, published by Springer-
Verlag, LNAI vol. 1038
[Silaghi 2004] Gheorghe Cosmin Silaghi,
“Knowledge-engineering approaches for de-
sign of multi-agent systems”, in Proceedings of
the 2nd International Workshop on Distributed
Systems, University of Suceava, December
2004
[Singh 1994] M. Singh, “Multi-agent sys-
tems: A Theoretical Framework for Intentions,
Know-How, and Communications”, Lecture
Notes in Artificial Intelligence, no. 799,
Springer-Verlag, Heidelberg, Berlin, 1994
[Sturm 2003] A. Sturm, D. Dori, O. Shehory,
“Single-Model Method for Specifying Multi-
Agent Systems”, in Proceedings of 2nd Interna-
tional Joint Conference on Autonomous Agents
and Multi-agent Systems, AAMAS, Melbourne,
July 2003,
[Wood 2001] Mark Wood, Scott DeLoach,
“An Overview of the Multi-agent Systems En-
gineering Methodology”, in Agent-Oriented
Software Engineering – Proceedings of the 1st
International Workshop on Agent-Oriented
Software Engineering, Limerick, Ireland, June
2000, published in LNAI, vol. 1957, Springer
Verlag, Berlin, January 2001
[Wooldridge 2000] M. Wooldridge, N.R.
Jennings, D. Kinny, “The GAIA methodology
for Agent-Oriented Analysis and Design”,
Autonomous Agents and Multi-Agent Systems,
vol. 3/3, Kluwer Academic Publishing, 2000
[Wooldridge 2002] Michael Wooldridge,
“An Introduction to Multi Agent Systems”, John
Wiley and Sons, Chichester, England, February
2002

