
Economy Informatics, 1-4/2005

36

Using Resources in Visual C#.NET Applications

Conf. Marian DÂRDALĂ PhD, lect. Adriana REVEIU
Academy of Economic Studies, Bucharest

This paper presents many aspects regarding embedding resources in applications. There are
analyzed the main advantages of using resources in software applications. We introduce sev-
eral ways to build and explore the application’s resources. Embedding software resources in
application is helpful for distributing purposes. This technique allows protecting software re-
sources for unauthorized access.
Keywords: resources, assembly, image, embedding resources.

Introduction
Windows applications developed using

Visual C++ 6.0 software environment use a
lot of software resources. They help us to de-
scribe dialog boxes, to store bitmaps like user
images, icons and cursors, strings and so on.
Resources are separately compiled in a pro-
ject against the C++ source code and then all
of them are linkedited to obtain the applica-
tion. The .NET Framework also provides
support for resources creation and localiza-
tion.
A resource can be defined like a nonexecu-
table data that is logically deployed with an
application. A resource might be displayed in
an application like messages or like part of
the user interface. Resources can contain data
in a various forms: strings, images, and an-
other kind of objects. If we store data in a re-
source file we can change them without re-
compiling the entire application. Using an
embedded resource of image type we can
protect it thus it can’t be changed or copied
by unauthorized users.
2. Using resources directly
Working with resources in this way requires
including the resource in the project directly

without using a specialized file for storing re-
sources. We have to execute the following
steps to include a resource directly in the pro-
ject:
- In the Solution Explorer window right click
on the project name and Add Existing Item;
- Choose the type of the resource (e.g. Image
Files) and the file that contain it; after that in
the Solution Explorer window, the name of
the file will appear like a new item;
- To embed this resource in the application,
right click on this new item and select for the
Build Action property Embedded Resource.
For instance we embedded at the res project
the pz.jpg file following the previous steps.
The goal of this application is to display in
the application form the bitmap that exist like
an embedded resource. To do that is neces-
sary to follow the next steps:
- To define a Bitmap object reference:
Bitmap poza;
- To obtain the names of all resources that
were added to the project in a string vector
(at the default assemblies):

string[] rs = GetType().Assembly.GetManifestResourceNames();

GetType() is a method that returns the type of
the object (this) and the property Assembly
gets the assembly that the type is declared in.
For an Assembly the GetManifestResource-

Names() method obtains the name of the all
embedded resources.
- Build the Bitmap object (poza) from the re-
source identified by its index in a rs vector:

poza=new Bitmap(GetType().Assembly.GetManifestResourceStream(rs[0]));

1

Economy Informatics, 1-4/2005

37

The GetManifestResourceStream() method
returns effectively the resource like a data
stream. It’s possible to load the resource us-

ing its name. The name has the structure: the
project name.the file name.the file extension:

poza=new Bitmap(

 GetType().Assembly.GetManifestResourceStream("res.pz.jpg"));

- Display the resource, I mean the image at the original size:

this.CreateGraphics().DrawImage(poza,0,0,poza.Width,poza.Height);

3. Using resources stored in resources files
The files that contain resources are the resx
or resources type. To create a resource file of
the resx type that contain a string type re-
source we have to follow the next steps:
- In the Solution Explorer window right click
on the project name and Add New Item;
- In the dialog box at Categories choose Re-
source File and at Templates select Assembly
Resource File then we can update the name
of the resx file (e.g. rs); after we perform this

operation in the Solution Explorer window
will appear a new item (rs.resx);
- To add a new resource in the rs.resx file
right click on rs.resx item and choose Open.
After this operation on the screen will appear
a form like in figure 1. A resource can be
identified by a name and the programmer can
associate it a value according with this name.
The value represents the resource. For in-
stance, as we can see in the figure 1 the name
of the entered resource is s1 and the value is
resursa de tip sir.

Figure 1. Form to work with resources in a resx file

In a resx file the data are stored in the XML
format. To see the resx file data in the XML
format click on the XML button.
To access the resources from a resx file we
use the ResXResourceReader class. To use

classes for accessing resources we have to
include the next sentence: using Sys-
tem.Resources;. The next code sequence
opens the rs.resx file, accesses each resource
within it and finally the file is closed.

 ResXResourceReader rsxr = new ResXResourceReader("rs.resx");
 foreach(DictionaryEntry d in rsxr)
 {
 MessageBox.Show(d.Key.ToString() + " >>\t" +
d.Value.ToString());
 }
 rsxr.Close();

Resources are organized by the ResXRe-
sourceReader class like a collection of the
DictionaryEntry elements. A DictionaryEn-

try object has two main properties: Key to
identify the name of the resource; and Value
to access the resource.

Economy Informatics, 1-4/2005

38

We can create resources files in a program-
matically way. If we want to create a re-
source file we’ll use the ResXResourceWriter
class. In the next program sequence we’ll

create a new resource file named resp.resx
then add an image resource from the pz.jpg
file and a string resource.

 Bitmap poza=new Bitmap("pz.jpg");
 string s = "resursa sir";
 ResXResourceWriter res=new ResXResourceWriter("resp.resx");
 res.AddResource("p1",poza);
 res.AddResource("s1",s);
 res.Close();

The AddResource method adds a resource
given its name and its value.
Having the resources in a resx file we can
convert it in a resources file using the Res-
Gen application. For instance, to convert the
resp.resx file in a resp.resources we use the
following command: >ResGen resp.resx
resp.resources.

Of course we’ll find in the resp.resources file
the same resources like in the resp.resx file
but to retrieve them we have to use the Re-
sourceReader class. The following code se-
quence is used to retrieve a string and image
resources from the resp.resources file:

ResourceReader rsxr = new ResourceReader("resp.resources");
foreach(DictionaryEntry d in rsxr)

{
 if (d.Key.ToString() == "s1") eb.Text=d.Value.ToString();
 if (d.Key.ToString() == "p1") poza = new Bitmap((Image)d.Value);
}

rsxr.Close();

The variables poza and eb are defined in this way:
 Bitmap poza;
 private System.Windows.Forms.TextBox eb;

4. Using resources in assemblies
Assemblies are the building blocks of the
.NET Framework; they form the fundamental
unit of deployment, version control, reuse,
activation scoping, and security permissions.
An assembly can contain a collection of re-
sources of various types and that are built to
work together and form a logical unit of
functionality. Resource assemblies are useful
when we need to update resources frequently
without to recompile the entire solution.
To create an assembly only with resources
we have to follow the next steps:
- Create a new application with the Empty
Project template named for example resursa;
- In the Solution Explorer window right click
on the project name and choose Add Existing
Item to add the Resource1.resx resource files
to the project;

- Add in the Resource1.resx file the string
type resource having the name s1 and the
value sir resursa;
- In the Solution Explorer window, right
click on the project name and choose Proper-
ties; then for Output Type property select
Class Library;
- Build the project.
Thus, the resources are compiled into the as-
sembly and they will be packed in the re-
sursa.dll file.
Resources compiled into resource assemblies
can be retrieved using the ResourceManager
class. We’ve just built the resursa.dll file that
contains the resources and we’ll develop a
new application to retrieve them.
In first step we have to add the assembly to
the new project. To do that, in the Solution
Explorer window right click on References

Economy Informatics, 1-4/2005

39

and select Add Reference. Search for re-
sursa.dll and add it to the project references.

To retrieve the resource that was packed in a
resursa.dll we used the next sequence:

 System.Reflection.Assembly ass;
 ass = System.Reflection.Assembly.Load("resursa");
 ResourceManager rm = new ResourceManager("resursa.Resource1", ass);
 string sir;
 sir = rm.GetString("s1");
 MessageBox.Show(sir);

We create an Assembly object loading the re-
sursa assembly. From this assembly we ac-
cess the resources from Resource1 (the name
of the resx file from the resursa project) and
then create a ResourceManager object (rm).
With this object, using the specialized meth-
ods according to the resource type, we can
retrieve the resources identified by its name
(in our example s1).

Conclusions
Software resources are often used in profes-
sional applications. They allow programmers
to build multilingual interfaces. Texts that
occur in the interface are displayed in a lan-
guage selected by the user when he/she in-

stalls the software package. More than this,
using resources, we can manage errors more
efficient; we can associate the error messages
with the error codes.

Bibliography
 * * * MSDN Library, Microsoft Copora-

tion, 2005;
 Richter J. Applied Microsoft .NET Frame-

work Programming, Microsoft Press, 2002;
 Smeureanu I., Dârdală M., Reveiu A., Vis-

ual C# .NET, CISON, Bucureşti, 2004;
 Wigley A., Wheelwright S., Microsoft

.NET Compact Framework, Microsoft Press,
2003;

