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The paper presents an axiomatic approach of Nonstandard Analysis due to V. Benci and M. 
di Nasso. The implementation in Mathematica® of some primitives which handle hyperreals is 
the purpose of a distinct section. A way of using Nonstandard Analysis in solving economic 
problems can be found in H. Varian, but this is not the goal of the present paper. 
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ntroduction 
The mathematical modeling of any phe-

nomenon (including the economic ones) is 
based on the functionality of the principle of 
commensurability of various classes of pa-
rameters. There are stipulated the following: 
a priori existence of the set of integer num-
bers; existence of a method of measurement 
specific for a certain class of parameters; ex-
istence of the representation of the parame-
ters’ properties through the measurement 
previously made. 
The notion of number is largely used, but up 
to now its complexity has not been com-
pletely revealed. Any high schooler operates 
with numbers from sets of natural, integer, 
rational, real or complex numbers. ℚ is the 
ordered sub-field contained in any ordered 
field. Another important property of ℚ is re-
lated to the quality of Archimedean ordered 
field: 
If 0>a  and 0>b , then there is n natural so 

that bna > . 
ℚ is also Archimedean ordered field which, 
in addition, enjoys the property of complete-
ness: any nonempty part S of ℚ upper 
bounded admits a least upper bound. It is 
known that any two complete ordered fields 
are isomorphe with respect to the following 
operations: addition, multiplication and or-
dering. ℚ is not an ordered field, but there 
are ordered fields which contain the set ℚ as 
an own sub-ordered field. Any ordered field 
ℚ* which contains ℚ as an own sub-ordered 
field is not Archimedean and, consequently, 
it is not complete. 
The notions of “small infinite” and “large in-
finite” were used by the authors of differen-

tial calculus: Leibniz and Newton. Partial 
removed by the δε −  language of A.Cauchy, 
K. Weierstrass and B.Riemann, criticised by 
Bertrand Russell at the beginning of the 20th 
century as inutile, wrong and contradictory, 
the notions revert to the rigour requested by 
the constructions of mathematical analysis 
used in the work of Abraham Robinson with 
regard to Nonstandard Analysis in the 7th 
decade of the last century.The following 
Robinson theorem presents the general 
framework for the below results. 
Theorem (A. Robinson). There is a set ℚ* 
having the following properties: 
1. ℚ is a strict subset of ℚ*.  
2. To every :f ℚ →n ℚ,  there corre-
sponds :*f (ℚ*) n →ℚ*, so that *ff =  over 
ℚ n . 
3. To every n-ary relation ρ  in ℚ 
( )1≥n , there corresponds a n-ary relation 

*ρ  in ℚ* so that ρ  coincides with *ρ  over 
ℚ. The equality relation in ℚ corresponds to 
the equality relation in ℚ*. 
4. Any statement δ  phrased in terms of: 
(i) some real numbers (fixed); (ii) some real 
functions (fixed); (iii) some relations in ℚ 
(fixed); (iv) some variables with values in ℚ; 
(v) some quantifiers and logical operations, is 
true with respect to ℚ iff the statement *δ  is 
true with respect to ℚ*, where *δ  is obtained 
from δ  by replacing each function 
( )nxxf ,,1 K  with the corresponding function 
( )nxxf ,,1

* K  and each relation ( )nxx ,,1 Kρ  
with the corresponding relation ( )nxx ,,1

* Kρ  
and by extending the variables from ℚ to ℚ*. 

I 
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We considered 1≥n . 
An element ∈a ℚ* is called infinitesimal if 

∈∀< rra , ℚ, 0>r . A number ∈a ℚ* is 

called finite if there is ∈r ℚ so that ra ≤ . A 
number ∈a ℚ* is called infinite if 

∈∀> rra , ℚ. 
It could be said that the existence of infini-
tesimals contradicts the “American dream” – 
if someone is born poor (an infinitesimal a), 
then even if they work hard to improve their 
condition and become a+a or a+a+a or na 
etc., they will always remain poor (infini-
tesimal).  
In the opinion of A. Robinson, the Nonstan-
dard Analysis rather consists in developping 
new inferring methods and not in introducing 
new mathematical entities; within the Non-
standard Analysis, infinite numbers and infi-
nitely small numbers do not have a weaker or 
a more powerful reality than that of irrational 
numbers in Standard Analysis. As the irra-
tional numbers, the Nonstandard (or ideal) 
ones are introduced through infinite proc-
esses. The elements in ℚ* appear as classes 
of equivalent sequences of rational numbers 
(with the proper difference in defining the 
two equivalence relations). 
 
2. An elementary axiomatics 
Many attempts have been made in order to 
simplify the foundational matters and give an 
easy presentation (the formalism of Robin-
son’s original presentation appeared too 
technical and not directly usable by those 
mathematicians without a good background 
in logic). Most notably, the pioneering work 
by W.A.J. Luxemburg, the superstructure 
approach presented by A. Robinson jointly 
with E. Zakon; the elementary axiomatics 
given by H.J. Keisler, the algebraic presenta-
tion of hyperreals by W.S. Hatcher, and fi-
nally the introduction by W. Henson. The re-
cent new presentation of nonstandard analy-
sis, that is named the Alpha-Theory, shows 
that technical notions such as superstructure, 
ultrafilter, ultrapower, bounded formula and 
the transfer principle, are not needed to rig-
orously develop calculus with infinitesimals. 
V.Benci and M.di Nasso give the following 

indication for a rigorous definition of the Al-
pha-Theory. Let { }JAL ,,∈= , where A  is a 
set of atoms and J  a binary relation. 
J1. Extension Axiom. If ϕ  is a sequence, 
then there exists a unique x  such that 
( )xJ ,ϕ . Vice versa, if ( )xJ ,ϕ  holds for 

some x , then ϕ  is a sequence. 
J2. Composition Axiom. If ϕ  and ψ  are se-
quences and if f  is any function such that 
compositions ϕof and ψof  make sense, 
then 

( ) ( )( ) ( ) ( )[ ][ ]yfJyfJyxJxJx ,,,, ψϕψϕ oo ∧∃→∧∀
 

J3. Number Axiom. Let ∈r ℚ A⊂ . If 
rncr a:  is the constant sequence with 

value r , then: ( )[ ]rxxcJx r =→∀ , . If 
nn a:1N  is the identity sequence on ℚ, 

then ( )[ ]NN ∉→∀ xxJx ,1 . 
J4. Pair Axiom. For all sequences ϕ , ψ  and 
ϑ such that ( ) ( ) ( ){ }nnn ψϕϑ ,=  for all n : 

( ) ( ) ( )( ) { }[ ]yxzzJyJxJzyx ,,,, =→∧∧∀∀∀ ϑψϕ
. 

J5. Internal Set Axiom. If ψ  is a sequence of 
atoms, then ( )[ ]AxxJx ∈→∀ ,ϕ . If Øc  is the 
constant sequence with value the empty set, 
then ( )Ø,ØcJ  is true. If ϕ  is a sequence of 
nonempty sets, then: 

( ) ( )[ ][ ][ ]yJxyyxJx ,, ψϕψψϕ ∧∈∃↔∈∀→∀ . 
They use the notation ϕψ ∈  as a shorthand 
for the following: ψ  and ϕ  are sequences 
and ( ) ( )nn ϕψ ∈  for all ∈n ℚ. 
Definition. The Alpha-Theory is the first-
order theory in the language { }JAL ,,∈= , 
where ∈ and J  are binary relation symbols 
and A  is a constant symbol, and whose set of 
axioms consists of: 
- All axioms of Zermelo-Fraenkel set the-
ory with atoms (ZFCA), with the only excep-
tion of the axiom of foundation. The separa-
tion and replacement schemas are also con-
sidered for formulas containing the J-symbol. 
- The five axioms J1, . . . , J5 as given 
above. 
Definition. The set of hyperreal numbers is 

( ){ }RNR →∧= :,|* ϕϕ xJx  
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Definition. Given a hyperreal number , the 
monad of ξ  is the set 

( ) =ξmon { ξ−∈ xx |*R  infinitesimal }. 
The galaxy of ξ  is the set 

( ) =ξgal { }finite is  * ξ−∈ xx R . 
Thus mon(0) is the set of infinitesimal and 
gal(0) is the set of bounded numbers. All the 
real numbers are contained in gal(0); the 
unique real number contained in mon(0) is 
“0”. Any two monads are equal or disjoint 
and any two galaxies are equal or disjoint. In 
addition, 

( ) =ξmon ( ){ }0| montt ∈+ξ , 
( ) =ξgal ( ){ }0| galtt ∈+ξ . 

Theorem (Shadow Theorem). Every finite 

hyperreal number ξ  is infinitely close to a 
unique real number r, called the shadow of 
ξ . Symbolically, ( )ξshr = . 
 
3. A Mathematica® Implementation 
The goal of this section is an instrumental 
one: we propose a framework for hyperreal 
numbers. The proposed implementation tries 
to use only a part of these numbers that is 
sufficient for explaining the distinction be-
tween various infinitesimals, as well as for 
explaining the distinction between various in-
finites. The instructions come to complete the 
package proposed by P.A. Rubin and taken 
over by H.R. Varian. 

 
IsHyperreal[number_]:=And[MemberQ[{Function},Head[number]], 
 Length[Complement[Variables[number[e]],{e}]]<1]; 
MakeHyperreal[number:(_?IsHyperreal|_?NumericQ)]:= 
 If[IsHyperreal[number],number, 
 If[And[Not[MemberQ[{Symbol},Head[number]]], 
     Simplify[number\[Element]Reals]], 
 Function[e,number]]] 
IsBound[hyperreal_?IsHyperreal]:=Module[{t},Off[Power::infy]; 
 t=hyperreal[0];On[Power::infy]; 
 Not[MemberQ[{Infinity,-Infinity,ComplexInfinity},t]]]; 
IsBound[hyperreal_]:=False; 
UpperBoundOfOrderScreening=300; 
DominantOrder[hyperreal_?IsHyperreal]:=Module[{t={hyperreal,0}}, 
 If[IsBound[hyperreal], 
 While[And[t[[2]]>-UpperBoundOfOrderScreening, 
     t[[1]][0]==0],t={Function[e, 
     Evaluate[D[#1[e],e]/(1-#2)]], -1+#2}& @@t]; 
 If[And[t[[1]][0]==0, 
     t[[2]]==-UpperBoundOfOrderScreening],t[[2]]=0], 
 Off[Power::infy]; 
 While[And[t[[2]]<UpperBoundOfOrderScreening, 
     MemberQ[{Infinity,-Infinity,ComplexInfinity}, 
       t[[1]][0]]], t={Function[e,Evaluate[e #1[e]]], 
       1+#2}& @@ t]; On[Power::infy]]; 
 {t[[1]][0],t[[2]]}]; 
UnboundFrame[hyperreal_?IsHyperreal]:=Module[{n}, 
 n=Evaluate[DominantOrder[hyperreal]][[2]];If[n>0, 
 Function[e,Evaluate[Normal[Series[e^n hyperreal[e], 
       {e,0,n-1}]]/e^n]], 
 Function[e, 0]] ]; 
CurrentFrame[hyperreal_?IsHyperreal]:=Module[{hyp}, 
 hyp=Function[e,Evaluate[hyperreal[e] 
       -UnboundFrame[hyperreal][e]]]; 
 MakeHyperreal[hyp[0]] ]; 
InfinitesimalFrame[hyperreal_?IsHyperreal]:=Function[e,Evaluate[ 
 hyperreal[e]-UnboundFrame[hyperreal][e]- 
       CurrentFrame[hyperreal][e]]]; 
IsReal[hyperreal_?IsHyperreal]:=!MemberQ[Variables[hyperreal[e000]],e000]; 
IsReal[hyperreal_]:=False; 
Unprotect[Positive,Plus,Times,Power]; 
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Positive[hyperreal_?IsHyperreal]:=DominantOrder[hyperreal][[1]]>0; 
Plus[h1_?IsHyperreal,h2_?IsHyperreal]:=Function[e,Evaluate[h1[e]+h2[e]]]; 
Times[h1_?IsHyperreal,h2_?IsHyperreal]:= 
 Function[e,Evaluate[ExpandAll[h1[e]*h2[e]]]]; 
Power[h1_?Positive,h2_?IsHyperreal]:= 
 Function[e,Evaluate[Power[h1[e],h2[e]]]]; 
Unprotect[Positive,Plus,Times,Power]; 
Shadow[hyperreal_?IsBound]:=CurrentFrame[hyperreal][0]; 
Infinitesimal[hyperreal_?IsBound]:= 
 If[Positive[InfinitesimalFrame[hyperreal]], 
     IA[Shadow[hyperreal]], 
 If[Positive[InfinitesimalFrame[-hyperreal]], 
     IB[Shadow[hyperreal]], 
 Shadow[hyperreal]]]; 
 
We mention that a hyperreal number is a λ - 
expression (by analogy with LISP) and the 
implementation is not exhaustive with re-
spect to the operations made with these num-
bers. 
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