
Economy Informatics, 1-4/2004

82

Filters for Eliminating Duplicate Records

Otilia PÎRLOG
National Defense Ministry

High quality data is essential for gaining the confidence of users of most current decision
support applications. Data cleansing is critical for a wide variety of applications. The dupli-
cate elimination problem of detecting multiple records, which describe the same real world
entity, is an important data cleaning problem. Large proportion of time in data cleansing is
spent on the comparisons of records. First, it is presented a simple and fast comparison
method based on textual similarity. The second method determines the potential duplicate re-
cords based on the level of similarity between the two records and a third record. The con-
struction is derived from the triangular inequalities applied to the records of databases. The
last approach uses a dimensional hierarchy and adopts a grouping strategy. Since such
groups are often much smaller than the entire relation, this strategy allows us to compare
pairs of tuples in each group.
Keywords: data quality, duplicate elimination, field similarity, record similarity.

ata warehouse construction
Data warehouses are repositories of data

collected from several data sources. For deci-
sion support, a data warehouse must provide
high quality data and services. Therefore,
significant amount of time and money are
spent on the process of detecting and correct-
ing errors and inconsistencies. Errors in data-
bases have been reported to be of up to ten

percent range and even higher in a variety of
applications. In [Wang95] it is reported that
more than $2 billions of U.S. federal loan
money had been lost because of poor data
quality at a single agency, manufacturing
companies spend over 25% of their sales on
wasted practices, service companies up to
40%.

Data Sources

Datamarts

Corporate Data
Warehouse(CDW)

Operational
Data Store (ODS)

 Extraction /
Archieving

 Cleaning

High Level
Aggegation

Aggregation /
Cleaning

 Integration /
Archieving

Customization

DataHierarchy of stores

Preparation

Integration

Aggregation

Customization

Fig.1. The hierarchical construction of a data warehouse

D

Economy Informatics, 1-4/2004

83

The data warehouse can be defined as a hier-
archy of data stores which goes from source
data to highly aggregated data (often called
datamarts). Between these two extremes
there can be other data stores depending on
the requirements of applications. One of
these stores is the corporate data warehouse
store (CDW) which groups all aggregated
views that serve to generate the datamarts.
Since data sources are independent, they may
adopt independent and potentially inconsis-
tent conventions. The corporate data store
can be complemented by an operational data
store (ODS) which groups the data collected
and integrated from the sources. The hierar-
chy of data stores is a logical way to repre-
sent the data flow between the sources and
the datamarts.
There are four levels in the construction of
the hierarchy of stores (figure 1). The first
level includes the extraction of data from the
operational data sources, their cleaning with
respect to the common rules defined for the
data warehouse store and their possible ar-
chiving in the case when integration needs
some synchronization between extractors.
The next level is the integration of data
originated from heterogeneous sources. This
level is often coupled with rich data trans-
formation capabilities. The process continues
with the data aggregation for the purpose of
datamarts construction, which is the last
level.
Similarity of records
The integrated data frequently contains ap-
proximately duplicate field-values and re-
cords that refer to the same entity but are not
identical. Variations in representation can
arise from typographical errors, misspellings,
abbreviations, as well as other sources. The
problem of identifying approximately dupli-
cate records in databases has been studied as
record linkage, the merge/purge problem,
hardening soft databases and field matching.
Duplicate elimination is hard because it is
caused by several types of errors, like typo-
graphical errors and equivalence errors – dif-
ferent representations of the same logical
value. For most of the occurrences, these rep-
resentations are not non-unique and non-

standard. It is important to detect and clean
equivalence errors because an equivalence
error may result in several duplicate tuples.
In order to detect inexact duplicates, the most
reliable way is to compare every record with
every other record, which takes N(N-1)/2
comparisons, where N is the number of re-
cords in the database. To cleanse large data-
bases this way would take very long time.
Most existing approaches have focused on
efficient algorithms for locating potential du-
plicates rather than precise similarity metrics
for comparing records. In order to reduce the
cleansing time, in this paper there are pre-
sented two methods for detecting potential
duplicates relied on threshold-based textual
similarity functions. If the degree of similar-
ity for two records exceeds a certain thresh-
old, σ, they are treated as a potential dupli-
cate pair.
Similarity is used to describe the degree of
similarity of records. Similar records should
have large similarity and dissimilar records
should have small similarity. The class of
equivalence errors can be addresses by build-
ing sets of rules.
Suppose that we determined the similarities
between corresponding fields of records R1
and R2, SimFj(R1, R2), for all fields Fj, where
j=1÷nf. Based on the field similarity, we can
compute the similarity for records, Sim(R1,
R2). Suppose that a database has fields F1, F2
... Fnf. with field weights w1, w2 ... wnf, re-

spectively, where 1
1

=∑
=

nf

j
jw .

The similarity of records is given by the ex-
pression:

∑
=

×=
nf

j
jFj wRRSimRRSim

1
2121))),((),(

A Textual Similarity Filter
Most of the domain-independent methods for
duplicate elimination rely on textual similar-
ity functions. The fields are treated as sets of
characters, so called ‘bag of words’.
Before cleansing there is a pre-processing on
records, which deals with data type checks,
format standardization and inconsistent ab-
breviations. After this process, for any two
duplicate records, the corresponding fields in

Economy Informatics, 1-4/2004

84

them should have almost the same characters.
Suppose a field F in record A has the charac-
ter set AF={x1, x2 ... xn} and the correspond-
ing field in record B has the character set
BF={y1, y2... ym}, where n and m are the num-
bers of characters of these two fields.
We define the field similarity,

[]1,0: aDDSim × , the number of characters
in the intersection of these fields divided by
the larger number of characters of them:

)
),(

mmax(n,
BA

BASim
FF

F
I

=

The intersection of fields AF and BF repre-
sents the vector z (max (n, m)), which ele-
ments zk, 1≤, k≤ max (n, m) are computed fol-
lowing the next rule:

zk = 1, if xk = yk
zk = o, if xk ≠ yks

Using the vector z(max(n,m)) we compute the
intersection |AF∩BF|: ∑ =

=
),max(

1

mn

k
kFF zBA I

Even if this is a positional expression, we
have to observe that two similar fields have
approximately the same characters. If we
compute the number of apparitions for every
discrete character, each character will have
the same number of apparitions in those
fields. Opposite, if the lengths n=m, the
probability for having the same number of
every character in two fields and the fields to
be different tends to zero.
Let define the vectors CarAF(n1) and
CarBF(n2), that represent the number of ap-
paritions of every discrete character in the
fields AF and BF. The dimensions of these
vectors are less than the dimensions of AF
and BF, n1≤n and n2≤m. Now, the intersec-
tion of fields AF and BF will be computed by
using of the vector h(max (n1, n2)), which
elements hl, 1≤, l≤ max (n1, n2) are decided
following the next rule:

hl = 1, if CarAF(l) = CarBF(l)
hl = 0, if CarAF(l) ≠ CarBF(l)

The intersection |AF∩BF| will be

∑ =
=

)2,1max(

1

mn

l
lFF hBA I and the level of

similarity between fields:

)
),(

21 n,max(n
BA

BASim
FF

F
I

=

A Triangle Inequality Filter
The complementary value for similarity is
the distance between fields, []1,0: aDDd × .
For the same records, A and B, d(A,B)=1 -
Sim(A,B).
Further, we have to consider the triangle ine-
quality. Let x and y be vectors. Then the tri-
angle inequality is given by

yxyxyx +≤+≤−
If real numbers (x, y, z) are the sides of a tri-
angle, then z < x + y, the triangular inequali-
ties are the inequalities yxzyx +≤≤−
For any three records, A, B and C, from this
inequality we derive the following two prop-
erties:
− d(A,C) ≤ d(A,B) + d(B,C)
− d(A,C) ≥ d(A,B) – d(B,C)
By substitution in these expressions with the
equivalent values of similarities, we have:

() () () 1,(,, −+≥ CBSimBASimCASim
() () ()CBSimBASimCASim ,(,1, −−≤

In this way, we are able to have information
about the similarity between two records, A
and C, without making a direct comparison
of them. We call the right side of expres-
sions, respectively, () () 1,(, −+= CBSimBASimLL ,
lower limit and () ()CBSimBASimUL ,(,1 −−= ,
upper limit similarity.
Suppose that the similarity threshold is σ, 0≤
σ ≥1. For any three records A, B and C, the
records A and C are duplicate if LL(A,C)≥ σ
and they are non-duplicate if UL(A,C)<σ.
The last situation is when the records do not
satisfy any of these rules. This means that we
have to decide the relationship between them
by applying more exactly method of com-
parison.
By reducing the number of comparisons, the
time for computation for large databases is
shorter. From this point of view, the method
represent a filter for settle the potential dupli-
cate records. Like all detection methods, we
first have to sort the records using a settled
key.

A Grouping Strategy Filter
The windowing strategies sort a relation on a
key and compare all records within a skid-

Economy Informatics, 1-4/2004

85

ding window on the sorted order. In this way,
the equivalence errors may be not adjacent to
each other in lexicographical sort orders.
Using textual similarity functions to detect
duplicates, due to equivalence errors, re-
quires that the threshold be dropped low
enough. The result of it is a large number of
false positive pairs of tuples incorrectly de-

tected to be duplicates. A very efficient
method for reducing the number of false du-
plicates is to use the dimensional hierarchies
typically associated with dimensional tables
in data warehouses.
In figure 2 it is presented a hypothetical
schema for database information.

Id1 Field11 Field12 K1 Class1

K1 DenK2 K2 Class2

K2 DenK3 K3 Class3
 K3 DenK4

Id1
Field11
Field12
K1

K1
DenK2
K2

K2
DenK3
K3

K3
DenK4

R1 R2 R3

Fig.2. The Hypothetical Schema of a Database

The dimensional hierarchy consists of three
relations, connected by referential links that
realize the joins between key and foreign
key. They are used in order to avoid compar-
ing all pairs of tuples in each relation. There
are a top and bottom relations within this hi-
erarchy.Relations R1, …Rm with keys K1, …
Km constitute a dimensional hierarchy if and
only if there is a key – foreign key relation-
ship between Ri-1 and Ri , where 2≤ i ≤ m. Ri
is the ith relations in the hierarchy. R1 and Rm
are the bottom and the top relations, and Ri
the child of Ri+1.
A tuple vi in Ri joins with a tuple vj in Rj if
there exists a tuple v in R such that the pro-
jection of v on Ri and Rj equal vi and vj re-
spectively. Specifically, we say that vi in Ri is
a child of vi+1 in Ri+1 if vi joins with vi+1. The
notations for Class1, Class2 and Class3, from
the hypothetical example, mark the possibil-
ity of grouping those tuples into children
sets.
In typical dimensional tables of data ware-
houses, the values of key attributes K1, … Km
are artificially generated by the loading proc-
ess before a tuple vi is inserted into Ri. In this
approach, a tuple in the parent relation Ri
joins with a set, which we call its child set, of
tuples in the children relation.
Let f1, … fm be binary functions called dupli-
cate detection functions, where each fi takes a

pair of tuples in Ri and returns 1 if they are
duplicates, and 0 otherwise. Let r=[r1, …rm]
and s=[s1, …sm] be two entities. We say that
r is a duplicate of s if and only if fi(ri, si)=1
for all i=1÷m. Therefore, a straightforward
duplicate detection algorithm would be to in-
dependently determine sets of duplicate tu-
ples at each level of the hierarchy and then to
determine duplicate entities over the entire
hierarchy. As we move down the hierarchy,
the reduction in the number of comparisons
is significant.
For the hypothetical example, we can process
each of the R1, R2 and R3 relations independ-
ently, to determine duplicate pairs of tuples
in these relations. We may then identify pairs
of duplicate entities if their corresponding
tuples at each level in the hierarchy (K1, K2,
K3 and K4) are either equal or duplicates.
As we mentioned, the difference between this
filter and the former consist in detection of
equivalence errors. So, the level of similarity
between two fields, F1 and F2, noted
Sim(F1,F2), is given by:
Sim(F1,F2)=val[val(Simcont – σcont) +
val(Simocc – σocc)], where:
 - val(x):R→{0,1} is a function defined as

follows:

 >

=
otherwise ,0

0 xif ,1
)(xval

 - Simcont represents the containment simi-
larity

Economy Informatics, 1-4/2004

86

 - σcont is the containment threshold
 - Simocc represents the co-occurrence simi-
larity
 - σocc is the co-occurrence threshold
This expression cumulates two kinds of simi-
larities, textual and containment, and two
kinds of threshold, also textual and contain-
ment.
We assume that each tuple v can be split into
a set of tokens (words) using a tokenization
function (say, based on white spaces). The
containment similarity metric is given by the
fraction of v1 tokens that v2 contains. De-
pending on the domain characteristics, this
similarity may be substitute with textual
similarity.
If i >1, we say that two tuples, v1 and v2, in
Ri co-occur through a tuple v in Ri-1 if they
both join with v. Note that while measuring
co-occurrence between two tuples in Ri we
only use Ri-1 . The restriction improves effi-
ciency because the number of distinct com-
binations joining with a tuple in Ri increases
as we go further down the hierarchy. The co-
occurrence similarity metric is given by the
containment similarity metric between the
children sets.
A more efficient technique is to process a
parent relation in the hierarchy before proc-
essing its child. After we process the topmost
relation, we group the child relation below
into relatively smaller groups and compare
pairs of tuples within each group. In this
way, the comparison will be finished at that
level of hierarchy where a non-duplicate pair
of tuples occurs. This is a top-down traversal
of the hierarchy. Otherwise, same sets of tu-
ples in Ri may be processed in multiple
groups causing repeated comparisons be-
tween the same pairs of Ri tuples.

Conclusions
Time is critical in cleansing large databases.
In this paper we first present a simple com-
parison method, based on textual similarity.
The other detection method is based on trian-
gle inequality property. So, we filter out a lot
of unnecessary comparisons. The last filter
exploits the dimensional hierarchies in data
warehouses in order to detect duplicates in

dimensional tables. Depending on the charac-
teristics of the content of databases, we can
choose between these methods or develop a
mixed technique.

References
[Anan02], Ananthakrishna, R., Chaudhuri,
S., Ganti, V.: Eliminating Fuzzy Duplicates
in Data Warehouses, In Proceedings of the
28th International Conference on Very Large
Databases, Hong Kong, China, 2002.
[Han02], Han, J., Kamber, M.: Data Mining:
Concepts and Techniques, Publisher: Wiley,
John & Sons, Incorporated, March 2002.
[Mong00], Monge, A.E.,: Matching Algo-
rithm within a Duplicate Detection System,
In IEEE Data Engineering Bulletin, volume
23(4), December 2000.
[Nati02], National Technical University of
Athens: Modeling Data Warehouse
Refreshment Process As a Workflow
Application, White Paper, 02 APR 2002.
[Rama01], Raman, V., Hellerstein, J.M.: Pot-
ter’s wheel: An Interactive Data Cleaning
System, In Proceedings of the 27th Interna-
tional Conference on Very Large Databases,
Rome, 2001.
[Redm01], Redman, T.C., Daugherty, M.,
Daugherty, M.: Data Quality: The Field
Guide, Publisher: Elsevier Science & Tech-
nology Books, January 2001.
[Sung02], Sung, S., Li, Z., Sun, P.: A Fast
Filtering Scheme for Large Database Clean-
sing, In Proceedings of the eleventh interna-
tional conference on Information and knowl-
edge management, McLean, Virginia, USA,
pages: 76 – 83, 2002.
[Wang95], Wang, R.Y., Storey, V.C., Firth,
C.P.: A Framework for Analysis of Data
Quality Research, In IEEE Transactions on
Knowledge and Data Engineering, 7(4),
pages: 623-640, 1995.

