
Economy Informatics, 1-4/2004

46

Latest ActiveX Technology Elements

Cezar BOTEZATU, Ph.D., Cornelia BOTEZATU, Ph.D.
Romanian-American University, Bucharest, Romania

The paper is meant to be an introduction into the ActiveX technology and some of its most
popular applications. The authors have tried to briefly discuss about ActiveX controls, their
characteristics, advantages and purpose, about Data Objects and about Microsoft Office
Visio 2003 ActiveX Control. The paper also contains an extensive set of examples that make it
accessible even to the uninitiated reader.
Keywords: ActiveX technology, ActiveX control, The <OBJECT> Tag, ADO (ActiveX Data
Objects), Microsoft Office Visio 2003 ActiveX Control.

ctiveX is a set of technologies from Mi-
crosoft that enables interactive content

for the World Wide Web. Before ActiveX,
Web content was static, 2-dimensional text
and graphics. With ActiveX, Web sites come
alive using multimedia effects, interactive
objects, and sophisticated applications that
create a user experience comparable to that
of high-quality CD-ROM titles. ActiveX
provides the glue that ties together a wide as-
sortment of technology building blocks to
enable these "active" Web sites.
An ActiveX control is really just another
term for "OLE Object" or, more specifically,
"Component Object Model (COM) Object."
In other words, a control, at the very least, is
some COM object that supports the IUn-
known interface and is also self-registering.
Through QueryInterface a container can
manage the lifetime of the control, as well as
dynamically discover the full extent of a con-
trol's functionality based on the available in-
terfaces. This allows a control to implement
as little functionality as it needs to, instead of
supporting a large number of interfaces that
actually don't do anything. In short, this
minimal requirement for nothing more than
IUnknown allows any control to be as
lightweight as it can.
Other than IUnknown and self-registration,
there are no other requirements for a control.
There are, however, conventions that should
be followed about what the support of an in-
terface means in terms of functionality pro-
vided to the container by the control. This
section describes what it means for a control

to actually support an interface, as well as
methods, properties, and events that a control
should provide as a baseline if it has occasion
to support methods, properties, and events.
Self-Registration
ActiveX Controls must support self-
registration by implementing the DllRegis-
terServer and DllUnregisterServer functions.
ActiveX Controls must register all the stan-
dard registry entries for embeddable objects
and automation servers.
ActiveX Controls must use the Component
Categories application programming inter-
face (API) to register themselves as a control
and register the component categories that
they require a host to support, and any cate-
gories that the control implements. In addi-
tion, an ActiveX control might want to regis-
ter the "control" keyword in order to allow
older containers, such as Microsoft Visual
Basic 4, to host them.
ActiveX Controls should also register the
ToolBoxBitmap32 registry key, although this
is not mandatory.
The Insertable component category should
only be registered if the control is suitable for
use as a compound document object. It is im-
portant to note that a compound document
object must support certain interfaces beyond
the minimum IUnknown required for an
ActiveX control. Although an ActiveX con-
trol might qualify as a compound document
object, the control's documentation should
clearly state what behavior to expect under
these circumstances.
The VBScript programming language is only

A

Economy Informatics, 1-4/2004 47

half of Microsoft's current Internet program-
ming strategy. The other half is ActiveX, a
way to develop programmable objects that
can be added to Web pages alongside im-
ages, text, Java applets, and other media.
VBScript provides access to the intrinsic
HTML controls-buttons, text fields, radio
buttons, and other things that are common to
Web-based forms. These controls are en-
countered any time someone registers to join
a Web site or order a product through the
Web.
To create sophisticated programs to run on a
Web page, somebody might want to extend
the possibilities beyond intrinsic controls by
using ActiveX controls.
An ActiveX control is developed using a lan-
guage such as Visual C++, Visual Basic, or
Delphi. Like an OCX, an ActiveX compo-
nent is designed to be used by some other
software - a Web browser, in this case.
More than 3,000 ActiveX controls are avail-
able for use, according to Microsoft. In addi-
tion to being usable on Web pages, these
controls can be used with other types of
software developed with programming lan-
guages such as Java, Borland C++ and Del-
phi, Visual Basic, and Visual C++.
These controls are developed in other lan-
guages, but their operation can be modified
and customized with the use of HTML code
and VBScript programs. ActiveX controls
are placed on a Web page using a special ex-
tended HTML tag called <OBJECT> and a
supporting tag called <PARAM>.
The <OBJECT> Tag
The <OBJECT> tag, proposed by the World
Wide Web Consortium as a standard, is used
to place an object on a Web page. The pri-
mary type of object discussed in this chapter
is an ActiveX control, but the tag considers
an object to be any type of media that can be
put on a page. <OBJECT> was proposed by
the Consortium as a way to replace several
current HTML tags and attributes-the
 tag, the Java <APPLET> tag, the
DYNSRC attribute used for audio and video
by Microsoft, and other proprietary exten-
sions to HTML. <OBJECT> also is flexible
enough in design to handle new forms of

media not yet invented for the Web.
Attributes are used with the <OBJECT> tag
to specify the following information: the ob-
ject's name; the type of object; the URL ad-
dress where the object can be found; layout
information such as height, width, spacing,
border width, alignment, and so on; an ID
code to verify the object's identity.
If the object has parameters, they can be set
with the <PARAM> tag. This tag has two at-
tributes: NAME and VALUE. The NAME
attribute gives the parameter a name, and
VALUE sets up a value for that parameter.
Although <OBJECT> is intended to be used
with a broad range of media, one example of
it in current use is the ActiveX control.
Generating <OBJECT> HTML Code
When the ActiveX Control Pad is used to add
an ActiveX object to a Web page, an <OB-
JECT> tag is added automatically to the
page. Here's an example of an ActiveX con-
trol's <OBJECT> tag:
<OBJECT ID="SpinButton1" WIDTH=16
HEIGHT=32 CLASSID="CLSID: 79176FB
0-B7f2-11CE-97EF-00AA006D2776">
 <PARAM NAME="Size" VALUE= "423;
846">
</OBJECT>
This <OBJECT> tag creates an ActiveX spin
button control with up and down arrows to
change a value. Java programmers will rec-
ognize the <PARAM> tag, because it has the
same attributes (NAME and VALUE) and
the same usage as it does with the Java
<APPLET> tag.
Because this HTML code is added automati-
cally by the ActiveX Control Pad, you do not
need to enter it yourself into a Web page's
HTML file.
The ID attribute of the <OBJECT> tag gives
the object a name. One of the biggest advan-
tages of VBScript and ActiveX is the capa-
bility of one object to communicate with an-
other object. A VBScript program can be
used for one element on a page-for example,
a <FORM> button-to modify another pro-
gram, such as an ActiveX control. ID is
needed for one object to know how to contact
another.
The CLSID attribute identifies the type of

Economy Informatics, 1-4/2004

48

object and provides some identifying charac-
teristics of the object. In the preceding exam-
ple, the CLSID was set to a complicated
string of numbers and letters:
CLSID:79176FB0-B7f2-11CE-97EF-00AA0
06D2776
This has two parts. The section before the co-
lon, CLSID, identifies this object as an
ActiveX control. Another example of an
identifier would be java:, representing an
applet programmed in that language.
The section after the colon indicates some
registration information that reveals where
the ActiveX control can be found on the
user's Windows system. ActiveX controls are
downloaded to the user's system and run lo-
cally. The CLSID gives the browser enough
information to find, identify, and run the con-
trol. It also creates a unique identifier for the
ActiveX control. No matter how many
ActiveX controls are implemented across the
Internet, each will use part of the CLSID to
establish its identity.
In addition to being usable on the World
Wide Web, ActiveX controls have an advan-
tage over other Internet programming solu-
tions such as Java applets and Netscape plug-
ins.
These controls can be used immediately in
other applications. For example, a control
that performs an image editing task on the
Web can be plugged into a software program
as easily as it was placed on a page.
An ActiveX-enabled Web browser will be-
have differently if it encounters a new control
than if it has seen the control previously.
If you are using a browser that can handle
ActiveX controls and you come to a page
containing a control, a check will be made to
determine whether you have downloaded the
control previously. This check will use the
CLSID attribute of the <OBJECT> tag to de-
termine whether the ActiveX control is pre-
sent on your system.
Because ActiveX controls are executed on
the user's system, there is obvious potential
for a programmer to run malicious code. In
order to run an ActiveX control, you need
some means of identifying the author as a
trustworthy source.

The VeriSign company is handling ActiveX
developer certification for a large number of
the existing controls. The certificate window
that opens when you encounter a new control
on a Web page has a link to a control verifi-
cation source such as VeriSign and probably
a link to the developer's Web site.
After the control has been downloaded and
executed, it remains on the user's computer
so that it does not have to be reloaded each
time the control is found on a Web page. The
only time that an ActiveX control will be
downloaded more than once is when a new
version is offered that the user does not yet
have.
This enables much quicker access to an
ActiveX control than is possible with Java
applets, which download again each time
they are encountered. However, the disad-
vantage is that ActiveX controls take up
space on a user's hard drive.
To see a sampling of the ActiveX controls
that have been made available, the Internet
information service CNET has introduced an
ActiveX file directory and news site.
When a control is on your system, you can
use it as a component in your own Web
pages and software projects. CNET's
ActiveX site has many controls available that
cater to programmers in need of useful com-
ponents.
Now, there are four ways to write an ActiveX
control: Microsoft Foundation Classes
(MFC); ActiveX Template Library; BaseCtrl
framework; Visual J++™ (COM objects
only).
Short for ActiveX Data Objects, Microsoft's
newest high-level interface for data objects,
ADO is designed to eventually replace Data
Access Objects (DAO) and Remote Data Ob-
jects (RDO). Unlike RDO and DAO, which
are designed only for accessing relational da-
tabases, ADO is more general and can be
used to access all sorts of different types of
data, including web pages, spreadsheets, and
other types of documents.
Together with OLE DB and ODBC, ADO is
one of the main components of Microsoft's
Universal Data Access (UDA) specification,
which is designed to provide a consistent

Economy Informatics, 1-4/2004 49

way of accessing data regardless of how the
data are structured.
ADO provides developers with a powerful,
logical object model for programmatically
accessing, editing, and updating data from a
wide variety of data sources through OLE
DB system interfaces. The most common us-
age of ADO is to query a table or tables in a
relational database, retrieve and display the
results in an application, and perhaps allow
users to make and save changes to the data.
Other tasks include: querying a database us-
ing SQL and displaying the results; accessing
information in a file store over the Internet;
manipulating messages and folders in an e-
mail system; saving data from a database into
an XML file; executing commands described
with XML and retrieving an XML stream;
saving data into a binary or XML stream; al-
lowing a user to review and make changes to
data in database tables; creating and reusing
parameterized database commands; execut-
ing stored procedures; dynamically creating a
flexible structure, called a Recordset, to
hold, navigate, and manipulate data; perform-
ing transactional database operations; filter-
ing and sorting local copies of database in-
formation based on run-time criteria; creating
and manipulating hierarchical results from
databases; binding database fields to data-
aware components; creating remote, discon-
nected Recordsets.
ADO exposes a wide variety of options and
settings in order to provide such flexibility.
Therefore it's important to take a methodical
approach to learning how to use ADO in an
application, breaking down each of the goals
into manageable pieces.
Most developers are very familiar with
ADO's ancestors, DAO and RDO. A few
items of note:
Cancel applies to asynchronous Execute and
Open; an error will occur if called otherwise.
Recordset.Save writes the recordset to a
physical file. No more writing out the data as
text!
MarshalOptions controls whether a client-
side recordset sends back all records or only
the modified records.
PageSize, PageCount, AbsolutePage are

ideally for Web sites. They allow you to re-
quest the 123rd page of records where there
are 63 records on a page—no more counting
through records.
Recordset.StayInSync is part of the data
shaping available in ADODB. Version 2.1
adds grandchild aggregates, reshaping and
parameterized commands using COMPUTE
to the earlier data shaping, and hierarchical
recordsets of version 2.0.
Using ADODB on the Web
ADO may be used in many environments,
one of the most popular of which is Internet
Information Services (IIS) Active Server
Pages (ASP).
The ADO 2.8 SDK consists of the following
components:
Microsoft ActiveX Data Objects (ADO)
enable client applications to access and ma-
nipulate data from a variety of sources
through an OLE DB provider. Its primary
benefits are ease of use, high speed, low
memory overhead, and a small disk footprint.
ADO supports key features for building cli-
ent/server and Web-based applications.
Microsoft ActiveX Data Objects (Multi-
dimensional) (ADO MD) provides easy ac-
cess to multidimensional data from languages
such as Microsoft Visual Basic , Microsoft
Visual C++ , and Microsoft Visual J++ .
ADO MD extends Microsoft ActiveX Data
Objects (ADO) to include objects specific to
multidimensional data, such as the CubeDef
and Cellset objects. With ADO MD you can
browse multidimensional schema, query a
cube, and retrieve the results.
Like ADO, ADO MD uses an underlying
OLE DB provider to gain access to data. To
work with ADO MD, the provider must be a
multidimensional data provider (MDP) as de-
fined by the OLE DB for OLAP specifica-
tion. MDPs present data in multidimensional
views as opposed to tabular data providers
(TDPs) that present data in tabular views.
Remote Data Service (RDS) is a feature of
ADO, with which you can move data from a
server to a client application or Web page,
manipulate the data on the client, and return
updates to the server in a single round trip.
Microsoft ActiveX Data Objects Exten-

Economy Informatics, 1-4/2004

50

sions for Data Definition Language and
Security (ADOX) is an extension to the
ADO objects and programming model.
ADOX includes objects for scheme creation
and modification, as well as security. Be-
cause it is an object-based approach to ma-
nipulation, you can write code that will work
against various data sources regardless of dif-
ferences in their native syntaxes.
ADOX is a companion library to the core
ADO objects. It exposes additional objects
for creating, modifying, and deleting schema
objects, such as tables and procedures. It also
includes security objects to maintain users
and groups and to grant and revoke permis-
sions on objects.
If you are a Java or Visual Basic developer,
you may have run into situations where you
really wanted to use some key feature of the
operating system. Let's say you want to be
able to draw something using DirectX™.
You can't do it directly with Visual Basic,
and, if you try it in Java, you aren't going to
be playing in the sandbox anymore (for those
of you who aren't Java-aware, the "sandbox"
is the name used for the virtual machine in
which your Java applet runs). This virtual
machine is not allowed access to your sys-
tem's services, to protect you, the consumer
of the Java applet, from inadvertently
downloading a virus that reads from or writes
to your hard disk. A way to get around the
problem of not being able to access basic
system services is to write an ActiveX con-
trol using the Win32 API and C++.
Unlike JAVA, ActiveX can also manage
files.
Slowly but surely, ActiveX technology has
taken over about 80% of the specific market.
 The Visio® drawing component, available
in Microsoft® Office Visio 2003, lets you
build upon the functionality of rich dia-
gramming capabilities through Visio automa-
tion. The Visio component can be embedded
in a number of containers, ranging from Of-
fice documents to custom applications built
in Visual Studio® .NET, so it's quite versa-
tile as well. In this article, we'll show you
how to drive the Visio drawing component
from a Microsoft .NET-based client applica-

tion to give your users the ability to manipu-
late graphics.
The Visio drawing component is essentially
an ActiveX® wrapper for the main Visio li-
brary. Like any ActiveX component, it can
be embedded in custom host applications de-
veloped using Visual Studio .NET 2003, Of-
fice 2003 containers (such as Microsoft
Word), Microsoft Internet Explorer 5.5 and
greater, and other ActiveX component con-
tainers. Although the component uses the
ActiveX architecture, it is more of an em-
beddable application component than the
typical ActiveX control found on a Web site.
The Visio component provides the full func-
tionality of the Visio application rather than a
small subset of features. The Visio control
differs from the Visio client application in
two ways. First, the drawing control only
supports single document interface (SDI)
windows. The control architecture supports a
single drawing in a single window. That
means that all multiple document interface
(MDI) windows in Visio are disabled in the
control context. The Visio component allows
access to neither the ShapeSheet window (al-
though you can program against the
ShapeSheet), nor the icon editor window.
Second, the drawing control does not load
Visual Basic® for Applications (VBA) or
run VBA code. That means that any existing
VBA code must be ported to host application
code. It also means that users never see the
Visio macro warning dialog when opening a
Visio document in the control.
The best practice when using the Visio com-
ponent is to intercept Visio events and dis-
play your own custom user interface. This al-
lows you to integrate the Visio component
more deeply into your application. It pro-
vides the Negotiate Toolbars and Negotiate
Menus properties on the drawing component.
Set these two properties to True and you can
expose the Visio toolbars and menus in the
drawing component using the application's
CommandBar object or UI object.
The Microsoft® Office Visio® 2003
ActiveX® Control (Visio drawing control)
offers the full functionality of the Visio ap-
plication through the rich Visio object model,

Economy Informatics, 1-4/2004 51

as an embeddable component. You can drive
the Visio drawing control programmatically
by events or by code in your hosting applica-
tion. Alternatively, the Visio drawing control
can provide a diagramming environment for
application users within the context of your
own application's user interface (UI).
The Visio drawing control provides the func-
tionality of the Visio application object
model in a component. The Visio drawing
control can be embedded in host applications
developed using Microsoft Visual Studio®
.NET 2003, Microsoft Office XP and Micro-
soft Office 2003 containers such as Microsoft
Office Word 2003, Microsoft Internet Ex-
plorer 5.0 and later, and other Microsoft
ActiveX® control containers. Once added,
the Visio drawing control provides a drawing
surface for displaying shapes.
This new level of integration allows the de-
veloper full control over the Visio user inter-
face integration with the host application.
The new functionality provides more power
than just simply embedding a Visio drawing
into an OLE container document, like Word.
Using a Visio drawing as an OLE object al-
lows you to view the diagram in the con-
tainer application, link the OLE object to the
actual Visio document to reflect changes, and
edit the Visio drawing by activating the Visio
application from within the container docu-
ment.
In the case of in-place OLE activation, you
are still working within the Visio user inter-
face. You cannot create your own UI. You
can't programmatically access the Visio
document using Automation from the con-
taining application. You are also limited to
application hosts that implement an OLE
container, which rules out technologies such
as .NET Windows Forms.
Because the Visio drawing control is a pro-
grammable component, you can integrate
your Visio solution code directly into the
host container application. In previous re-
leases of Visio, a developer writing a solu-
tion for the Visio client application needed to
package the solution code in a COM add-in,
Visio solution library (VSL), out-of-process
executable, or in a Visual Basic for Applica-

tions (VBA) project in a document.
The Visio control simplifies solution archi-
tecture and the development process by al-
lowing programming of the Visio Applica-
tion object from the hosting application. A
developer using the control in a custom ap-
plication (such as a C# application) or Inter-
net Explorer should program against the
Visio object model directly in the host appli-
cation, without separating the Visio logic into
a COM add-in, VSL, or executable. Calling a
Visio COM add-in, VSL, or executable from
the hosting application unnecessarily compli-
cates the debugging of the Visio integration.
The Visio drawing control supports many
containers, including hosting applications
built in Visual Studio. NET 2003, Visual
Studio 6.0, Internet Explorer 5.0 or later,
ASP.NET, and other ActiveX control con-
tainers. However, the Visio control cannot be
directly embedded in:
• Another ActiveX control, like the Internet
Explorer browser control.
• A Visio document.
• A Microsoft Office InfoPath™ 2003 form.
Note You can embed ActiveX controls into
the Visio drawing control (as opposed to the
Visio drawing control embedded in another
ActiveX control). However, because the
Visio drawing control will not execute VBA
code in a Visio document, it's better to inte-
grate other ActiveX controls into the host ap-
plication project instead of the Visio docu-
ment.
Internet Explorer 5.0 or later provides an ex-
cellent host container for the Visio drawing
control, allowing developers to write script
against the Visio object model in Microsoft
Visual Basic Scripting Edition (VBScript) or
ECMAScript as defined by the specification
of the European Computer Manufacturers
Association, such as JScript or JavaScript.
While you cannot embed the Visio drawing
control directly onto an InfoPath 2003 form,
InfoPath provides a solution task pane con-
taining an Internet Explorer window. You
can embed the Visio drawing control directly
into the InfoPath solution task pane window
and use the Document Object Model (DOM)
to share data between the Visio drawing and

Economy Informatics, 1-4/2004

52

the InfoPath form.
When designing an application that uses the
Visio drawing control, it's important to un-
derstand that the Visio control supports a
single document in a single window. The
control's single document interface (SDI) ar-
chitecture results in the following considera-
tions when designing the Visio drawing con-
trol integration with your application:
- Use multiple instances of the Visio draw-
ing control to display multiple Visio docu-
ments in your application. Unlike the Visio
client application, which can display multiple
documents and windows at a time, the Visio
drawing control can only display a single
document per instance of the control. If the
developer wants to display multiple Visio
documents, the developer can embed multi-
ple instances of the control in the application,
with each instance loading a separate Visio
document.
- Do not depend on VBA for program-
ming logic. VBA is not included with the
Visio drawing control. As a result, docu-
ments loaded in the Visio drawing control do
not execute any VBA code associated with
the document. The control's lack of a VBA
run-time environment prevents the distribu-
tion of legitimate code or malicious macros
via documents loaded by the Visio control. It
also means that the user of an application
hosting the control will never see the Visio
application's security dialog box warning
about macros in the document.
- Use the Visio ShapeSheet® program-
matically. The control does not provide ac-
cess to the Visio ShapeSheet user interface,
which is a separate window in the Visio ap-
plication. However, the ShapeSheet itself still
exists for the Visio shapes and pages in the
document loaded in the Visio drawing con-
trol. You can still edit ShapeSheet cells for
your Visio document in the control using
Visio Automation.
Use marker events for COM add-ins. If
you must use a COM add-in, you will need a
way to notify your COM add-in to respond to
a user action in your document. Use the
QUEUEMARKER function in the
ShapeSheet or a persistent event with the

document to queue a marker event to which
your COM add-in responds. When you are
porting your code from an existing Visio cli-
ent application solution to the Visio control,
include these design considerations in your
planning.
• Port VBA code. You must port all existing
VBA code into a COM add-in, or more pref-
erably, your host application. You can keep
most of your same algorithms and logic, as
long as it makes sense working within the
control's SDI architecture.
• Port an existing Visio solution COM
add-in, executable, or VSL to the con-
tainer application. While it might be ini-
tially easier to simply use an existing COM
add-in, executable, or VSL with the host ap-
plication, it is recommended that you inte-
grate the Visio drawing control programming
directly with the host application. By taking
the time to port your code from your existing
solution to your host application, you'll sim-
plify deployment of your solution, and
streamline the development, debugging, and
maintenance process over time. You do not
need to use a COM add-in unless you are
working with the control in another Office
container.
• Re-evaluate data storage in shapes. If
your current Visio solution stores extensive
data in shapes, consider re-architecting data
storage out of Visio shapes and into data
structures maintained or accessed by the host
application. Visio can store as much data as
you need, but it often makes more sense to
keep Visio as a presentation layer component
and use your host application as data storage
or access to a data source. If the data is rela-
tively static, though, and used heavily for
modifying the appearance and layout of
shapes, it makes more sense to store the in-
formation in the shape custom properties.
• Think about event integration with the
host application. Unlike a Visio client ap-
plication solution, the Visio drawing surface
can respond to both user events and host ap-
plication events. Consider how you want the
drawing surface to respond to events fired by
the host application, and how your host ap-
plication needs to respond to events in the

Economy Informatics, 1-4/2004 53

Visio drawing surface. You can easily create
a Visio drawing control instance in managed
code. Completing this procedure to add the
following assembly references to your pro-
ject: VisioOcx The Visio drawing control
primary interop assembly; Visio The Visio
type library primary interop assembly; AxVi-
sOcx An ActiveX control wrapper assembly
that allows the control to be embedded within
a Windows Form. The Windows Forms
ActiveX Control Importer (Aximp.exe) gen-
erates this assembly automatically and adds it
to your project. This wrapper assembly must
be redistributed with the application. Multi-
ple Visio drawing control instances on a form
share the same wrapper class derived from
the AxHost class.
Exposing the Microsoft as a Web Part
Web Parts are components of a Web Part
Page that can be easily managed to define
team workflow. A SharePoint site is com-
posed of multiple Web Part Pages and Web
Parts. Example Web Parts include the
Shared Documents Web Part, which lists
the files in a document library and provides
menu items for checking files in and out of a
document library.
The Microsoft Office Visio® 2003
ActiveX® Control, also known as the Visio
drawing control, can be rendered in a Web
Part. This allows a Visio document to appear
on a page on a SharePoint site. However, a
more compelling reason for implementing a
Visio Web Part is that Web Parts can use
standard interfaces to communicate with each
other. Users can select from a menu to con-
nect Web Parts that can exchange data, and
these Web Parts can be developed com-
pletely independently of each other.
As a Web Part, the Visio drawing control
provides an ideal smart client for a Web ser-
vice. The Visio drawing control can serve as
a visualization display surface for data pro-
vided by a Web service, such as the Human
Workflow Services (HWS) available from
Microsoft BizTalk™ Server. HWS provides
a Web service API that client applications
can use to provide workflow capabilities to
the end user. The Visio drawing control gives
the corporate developer the ability to track

workflow information to the end user graphi-
cally.
A basic implementation for a Web Part inher-
its from the Microsoft.SharePoint. Web-
PartPages.WebPart class and overrides the
RenderWebPart method. Additionally, your
Web Part project must contain the following:
• A reference to the Microsoft.Sharepoint.dll
assembly.
• A Web Part class file and a matching .dwp
file. A .dwp file is an XML file that refer-
ences a Web Part's assembly, namespace, and
class name, plus optional property settings
for the Web Part.
• A Manifest.xml file for the Web Part that
contains XML elements describing setup in-
formation. The Manifest.xml file is used by
the Stsadm.exe tool during installation of a
Web Part.
Web Parts share common properties, such as
Title, Height, and AllowClose. These prop-
erties are displayed in a frame when the site
administrator adds a new Web Part or modi-
fies an existing one. Developers can add cus-
tom properties to Web Parts by adding stan-
dard .NET properties to the Web Part class
implementation.
Microsoft Active X technology proved to be
very up to date as it has been included and
integrated in .NET standards and it is still
expanding an the IT market, especially for
the Internet.

Bibliography
1.Kenneth Lassesen, ADODB: ActiveX Data
Objects 2.1, Microsoft Corporation
2.Nancy Winnick Cluts, Creating ActiveX
Components in C++, Microsoft Corporation
3.Nancy Cluts, Microsoft ActiveX Controls
Overview, Microsoft Corporation
4.W Ernst, The Components of ActiveX,
O’Reilly &Assoc.Press,1998
5.Mark Bukovec, Programming with the Mi-
crosoft Office Visio 2003 ActiveX Control,
September 2003
6.*** - ActiveX – http//www.Microsoft.com

7.*** - VBScript &ActiveX–
www.Activex.org

