
Economy Informatics, 1-4/2004

77

Using Servlet Technology for Web Pages Design

Lecturer PhD. Marian CRISTESCU
“Lucian Blaga” University of Sibiu, Faculty of Sciences, Department of Computer Sciences

E-mail: marian.cristescu@ulbsibiu.ro

The rise of server-side Java applications is one of the most interesting trends in Java pro-
gramming. The Java language was originally design for use with small devices, and it was
first used as a language for developing elaborate client-side wed content in the form of ap-
plets. But in the last years, Java has shown a great potential for developing server-sides, and
now has come to be recognized as a language ideally suited for server-side development.
Keywords: servlet technology, web design, session tracking, HTTP protocol.

Advantages against the others web de-
sign technology

A servlet is a particular Java server extension
which can be loaded dynamically to expand
the functionality of a server, and servlets are
commonly used with web servers, where they
can take the place of CGI scripts. A servlet is

similar to a proprietary server extension, ex-
cept that it runs inside a Java Virtual Ma-
chine (JVM) on the server, as it shown in
figure 1, so it is safe and portable. Servlets
operate solely within the domain of the
server: unlike applets, they do not require
support for Java in the web browser.

Java Servlet-based Web Server

Main Process

JVM

Servlet 1

Servlet 2

Request for Servlet1

Request for Servlet2

Request for Servlet1

Thread

Thread

Thread

Fig.1. The servlet life cycle

Unlike CGI and FastCGI, which use multiple
processes to handle separate programs and/or
separate requests, servlets are all handled by
separate threads within the web server proc-
ess or by threads within multiple processes
spread across a number of servers.
Because servlets run within the web server,
they can interact very closely with the server
to do things that are not possible with CGI
scripts. In addition to this, servlets have the
advantage to be portable: both across operat-
ing system as it is Java and also across web
servers.

2. Genereting a web page using servlet
technology
Normaly, every servlet must implement the
javax.servlet.Servlet interface, but
most of the servlets implement it by extend-
ing one of the next two classes:
javax.servlet.GenericServlet or
javax.servlet.http.HttpServlet.
Unlike a regular Java program, and just like
an applet, a servlet does not have a main()
method. Instead, certain methods of a servlet
are invoked by the server in the process of
handling requests. Each time the server dis-

1

Economy Informatics, 1-4/2004

78

patches a request to a servlet, it invokes the
servlet’s service() method.
A generic servlet should override its ser-
vice() method to handle requests properly

for the servlet. The service() method takes
two parameters: a request object and a re-
sponse object. Figure 2 shows how a generic
servlet handles requests.

Server GenericServlet subclass

service()
request

response

Fig.2. A generic servlet handling a request

An HTTP servlet usually does not override
the service() method. Instead, it over-
rides doGet() to handle GET requests and
doPost() to handle POST requests. The
service() method of HttpServlet handles

the setup and dispatching to all the
doXXX() methods, which is why it usually
should not be overridden. Figure 3 shows
how an HTTP servlet handles GET and
POST requests.

Server HttpServlet subclass

service()

GET
request

response

POST
request

response

doGet()

doPost()

Fig.3. An HTTP servlet handling GET and POST requests

The most basic type of HTTP servlet gener-
ates a full HTML page. Such a servlet has
access to the same information usually sent

to a CGI script, plus a bit more. Example 1
shows an HTTP servlet that generates a com-
plete HTML page.

Example 1. A HTTP servlet that generates a login page:
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
public class HelloWorldServlet extends HttpServlet
{
protected void doGet(HttpServletRequest aRequest, HttpServletResponse aRe-
sponse) throws ServletException,IOException
 { aResponse.setContentType("text/html");
 PrintWriter out = aResponse.getWriter();

Economy Informatics, 1-4/2004

79

 out.println("<html>");
 out.println("<head><title>Login </title></head>");
 out.println("<body>");
 out.println("<form action=/servlet/loginhandler

method = post>")
 out.println("<center>");

out.println("Username: <input type=text name=”user”
value=’’ size=20>
");

out.println("Password: <input type=password name=”password”
value=’’ size=20>
");

out.println("<input type=sumit value=’OK’>");
 out.println("</center>");
 out.println("</body></html>");
 }
}
Just like applets, servlets can define init()
and destroy() methods. The server calls a
servlet’s init() method after the server
constructs the servlet instance and before the
servlet handles any requests. The server calls
the destroy() method after the servlet has
been taken out of service and all the requests
to the servlet have completed or timed out.
The init() method is typically used to per-
form servlet initialization—creating or load-
ing objects that are used by the servlet in the
handling of its requests. This method can
take also take parameters, which are given to
a servlet itself and are not associated with
any single request.
In the destroy() method, a servlet frees
any resources it has acquired that will not be
garbage collected. The destroy() method also
gives a servlet a chance to write out its
unsaved cached information or any persistent

information that should be read during the
next call to init().

3. Session tracking
A server that uses HTTP protocol for com-
munication can not recognize that a sequence
of requests were all originated from the same
user, so it is necessary for the user to intro-
duce himself every times he makes a request,
in fact to attach in request a unique identifier
that lets the server identify it. For solving this
there are two possibilities: using the tradi-
tional session-tracking techniques or using of
the Session Tracking API.
The traditional session-tracking techniques,
which can be used also by the CGI develop-
ers, are easily implemented with servlet the-
ology:
• user authentication: is possible by using of
getRemoteUser() method which returns
the username, after the client’s login.

Example 2. A servlet that uses user authenication:
...
String name = reg.getRemoteUser();
if (name == null)
{ // Message that explains why the access in forbidden
}
else
{ // Instructions that handle the requests
}
...

• hidden form fields: the advantages of this
method is that hidden fields are supported in
all the popular browsers that works with
HTML, they demand no special server re-

quirements and can be with clients that ha-
ven’t registered or logged in. Hidden form
fields are included in a HTML file like this:

Example 3. A servlet that uses hidden form fields:

<FORM ACTION = “/servlet/servletName” METHOD = “POST”>
...
<INPUT TYPE = hidden NAME = “number” VALUE = “1234”>

Economy Informatics, 1-4/2004

80

<INPUT TYPE = hidden NAME = “character” VALUE = “Java”>
...
</FORM>

• URL rewriting: with URL rewriting the
clients can include extra information to the
end of every URL for identify the session, so
that the server can be able to associate the ex-
tra information with the information that he
has about the session. The extra information
can be in the form of extra path information,
added parameters, or some custom, server-
specific URL change;

• cookies: cookies offer an elegant, efficient
and easy way to implement session tracking.
For each request, a cookie can automatically
provide a client’s session ID or perhaps a list
of client’s preferences. But the biggest prob-
lem with cookies is that browsers don’t al-
ways accept cookies. Sometimes because the
browser doesn’t support cookies, but more
often because the user has configured the
browser to refuse cookies.

Example 4. A servlet that uses cookies:

 String sessionId;

Coockie[] cookies =reg.getCoockies();
If (cookies != null)
{ for(int i = 0; i < cookies.lenght; i++)

{ if (cookies[i].getName.equals(“sessionid”))
{ sessionId = cookies[i].getValue();
 break;
}

}
...

In addition to traditional session-tracking
techniques there is support for session-
tracking in the Servlet API, which makes
easily for to developers to handle this prob-
lem by using servlets. Session Tracking API
represents that part from the Servlet API
which handles this problem. A HttpSes-
sion object makes an association between a
HTTP client and a HTTP server. This asso-
ciation is maintained through a set of connec-
tions and requests over a specify period of
time. Associations maintain information

about the state and information about the
user.
A servlet uses its request object’s getSes-
sion(boool create) method to re-
trieve the current HttpSession object.
This method returns the current session asso-
ciated with the user making the request. If the
user has no current valid session, this method
creates one if create is true or returns
null if create is false.

Example 5. Un servlet care utilizeaza HTTPSession:
...
HTTPSession session = req.getSession();
String sessionAtribute = session.getAtribute(“clientName”);
...
session.setAtribute(“clientName”, otherAtribute);
...

4. Using databases
Using databases in designing web sides has
become a common thing due to the advan-
tages that this kind of data storing offers: fast
access to information, selections after differ-
ent criteria and an easy actualization. The

only problem with using databases in design-
ing web sites is that these sites are harder to
implement than usual sites.
The biggest advantage for servlets with re-
gard to database connectivity is that the serv-
let life cycle allows servlets to maintain open

Economy Informatics, 1-4/2004

81

database connections. An existing connection
can trim several seconds from a response

time, compared to a CGI script that has to re-
establish its connection for every invocation.

Example 6. Doing a SQL statement:
...
try
{ db = new DBHelper();
}
catch (Exception e)
{ throw new SQLException(e.getMessage());
}
 Connection con = null;
try
{ con = db.getConnection();
 DBHelper.executeUpdate(con,

"insert into PROIECTE (PROI_NUME, CLIE_ID) values (?, ?)",
 new Object[] {
 NumeProiect,
 IdClient});
 }
finally
{ DBHelper.close(con);
}
...

The previous example presents a simple way
through which a servlet connects to a data-
base, realize a SQL statement and in the end
it closes the connection.

5. Conclusions
Servlet technology allows creating web pages
with dynamic content in an elegant way,
based on object-oriented technology, and
also solving, through predefined classes, the
most important problems of web pages: han-
dling requests, session tracking and database
connectivity.
For more, an application made by using serv-
let technology presents the advantage to be

portable over the operating system and also
over the web server. The only thing that a
client needs to run the application is a simple
web browser.

References:
[HALL00] – Hall M., “Core Servlets and
JavaServer Pages”, Sun Microsystems Press,
2000;
[HUCR01] – Hunter J., Crawford W. “JAVA
Servlet Programming, 2nd Edition”.
O’Reilly, 2001;
[****] - www.corewebprogramming.com
[****] - www.javaworld.com
[****] - java.sun.com/products/servlet/2.2/javadoc/

