
Economy Informatics, 2003

50

Parallel and Concurrent Operations in Relational Databases

Ph.D. Eng. Georgios KAPENEKAS, Ph.D. George A. THANOS
Technological Education Institute Halkida Greece

Operations in the relational data model
The relational model is one of the most

used data model, it is a good choice for the
implementation of databases. This is a pow-
erful model, it supports simple and declara-
tive languages, and it is value or iented. It has
the ability to define operations on relations
whose results are the mselves relations, and
the operations can be combined and cascaded
easily The first variant we can implement
operations in the relational model is to allow
any program to be an operation on relations.
The main disadvantage of this case is that the
programs have to know everything about the
physical structures of data used, and the code
depends on the particular structure selected at
the design time. As a result it is preferred in
database system to design query languages,
that deals only with data model, not of a par-
ticular physical implementation of the
model1,6,7. Supplementary to choose of a
query language that operates only on rela-
tions, it is important that operations to have
implementations that are efficient, since we

want fast response to query on large data-
bases.

2. Union
The union of relations R and S, denoted
R∪S, is the set of tuples that are in R or S or
both4,5. We may only apply the union opera-
tor to relations of the same arity, so all tuples
in the result have the same number of com-
ponents. Recall that the attribute name for the
operand relations is ignored and to the result
relation can be given attributes arbitrarily.
The order of attributes in the operands is re-
spected when taking the union. We consider
two relations R and S that have the tuples
stored in two lists. Each tuple of the two rela-
tions is associated with a processor that keeps
the data. Every processor has four local vari-
ables: next[k] pointer to the next processors
from list; asociat[k] pointer between two tu-
ples from different relations; urm[k] auxil-
iary variable and test[k] a Boolean variable
that indicates if the tuple must be added to
the result relation11.

 for all k in parallel do 
 asociat[k]:=null
 test[k]:=true
 asociat[list1]:=list2
 for all k in parallel do 
 urm[k]:=next[k]
 while urm[k]≠null do 
 if asociat[k]≠null then 
 asociat[urm[k]]:=urm[asociat[k]]
 urm[k]:=urm[urm[k]]
 
 
 next[end_list2]:=list2
 for all k in parallel do 
 if data[k]:=data[asociat[k]] then 
 test[k]:=false
 asociat[k]:=next[asociat[k]]
 while asociat[k]≠list2 do 
 if data[k]:=data[asociat[k]] then 
 test[k]:=false
 asociat[k]:=next[asociat[k]]
 
 
 next[end_list2]:=null
 for all l in parallel do 
 urm[l]:=next[l]
 for j:=1 to log2k do 
 for all k in parallel do 

1

Economy Informatics, 2003

51

 if test[k]=false then 
 urm[k]:=urm[urm[k]]
 |
 
 urm[end_list1]:=list2

The algorithm to compute union of two rela-
tions begins by initialization of the local var i-
ables of processors that store relation R. Ini-
tially, we assume that does not exist any tu-
ple from a relation that is friend with a tuple

for other relation and in result relation we
will keep all tuples from R.
In the second part of algorithm we achieve an
association in ascendant order of processors
that store tuples from relations R and S, at
the end of loop for each tuple from relation R
exist an friend tuple in relation S. We con-
sider that the number of tuples in R is less
that number of tuples in S. For this loop the
compute time is O(log2 TR).
In the third loop we follow the pointer from
circular list of tuples from relation S and
compare with each tuple from R to find an-
other occurrence of an tuple from relation R
that is in relation S to eliminate it from result
relation. The compute time for this lo op is
O(TS).
In the last loop we get the union relation after
we exclude the duplicate. Union relation is
keep in a list store by pointers urm[l]. The
compute time for this loop has a logarithmic
value of number of tuples from R O(log2 TR).

3. Selection
Let F be a formula involving
- operands that are constants or component’s
attribute of R,
- the arithmetic comparison operators <, =, >,
≤, ≠, ≥;
- the logical operators ∧, ∨, NOT.
Then σ(R) is the set of tuples µ in R such
that when we substitute for all i the ith com-
ponent of µ for any occurrences of &i in
formula, it becomes true. To demonstrate
how we can calc ulate selection in a parallel
system we consider a relation S, which each
tuple is stored by an unique processor from
an array of processors. Each processor have
the following var iables: data[k] to keep the
initial tuple; next[k] pointer to next processor
that have an tuple, test[k] a Boolean variable
that is true if the local tuple is not a duplicate
of another tuple from relation R, sel[k] to
keep tuple of result selection relation and
urm[k], pointer to next processor that keep a
tuple from result relation11.

Economy Informatics, 2003

52

 for all k in parallel do 
 sel[k]:=selection(data[k])
 urm[k]:=next[k]
 
 urm[end]:=list
 for j:=1 to log2k do 
 for all k in parallel do 
 if sel[k]:=sel[urm[k]] then 
 test[k]:=false
 
 
 urm[k]:=urm[urm[k]]
 
 for all k in parallel do 
 urm[k]:=next[k]
 
 for j:=1 to log2k do 
 for all k in parallel do 
 if test[k]:=false then 
 urm[k]:=urm[urm[k]]
 
 
 

4. Set difference
The set difference of relations R and S, de-
noted R-S, is the set of tuples in R but not in
S. The arity of relations R and S must be the
same. In our implementation we consider that

each tuple from relations R and S is assoc i-
ated to a processor. All tuples from relation R
and S are keep in two different lists. Each
processor have the following variables:
next[k] - pointer to next processor that keep a
tuple from relation; urm[k] - auxiliary vari-
able keeping a pointer to tuple from other re-
lation to which we compare the local tuple;
test[k] - a Boolean variable that is true if the
tuple must be in result relation; data[k] - to
keep the local tuple. Finally relation R-S re-
sult in list keeps by pointers urm[k].
The algorithm 8 is based on simultaneous read
of data by the processors. In the initialisation
phase all processors which keep tuples of re-
lation R attribute to variable urm[k] the ad-
dress of processor that keep the first tuple
from relation S. After comparison of tuples
the variable test[k] is set according to nece s-
sity of keeping the tuple in result relation we
pass to the next tuple from relation S. This
process need an compute time of O(l), where
l is the number of tuples of relation S. Finally
are actualised pointers urm[k] to obtain rela-
tion R-S. The execution time is of O(log k),
where k is the number of tuples from relation
R.

 for all k in parallel do 
 urm[k]:=list 2
 test[k]:=true
 
 while urm[k] ≠ null do |

Economy Informatics, 2003

53

 for all k in parallel do 
 if data[k] = data[urm[k]] then 
 test[k]:=false
 
 
 urm[k]:=urm[urm[k]]
 
 for all k in parallel do 
 urm[k]:=next[k]
 
 for j:=1 to log2k do 
 for all k in parallel do 
 if test[k]:=false then 
 urm[k]:=urm[urm[k]]
 
 

5. Cartesian product
Let R and S be two relations of arity k1 and
k2, respectively. Cartesian product of R and
S, denoted RxS, is the set of all possible (k1+
k2) tuples whose first k1 components from a
tuple in R and whose last k2 components
from a tuple in S.
Each tuple of the two relations R and S is a s-
sociated with a processor from system. Tu-
ples of relation S are stored in a list, to pass

from a tuple to next tuple is used variable
next[k]. Last tuple of relation has next[k] =
null. The algorithm uses simultaneous read of
data by more processors: all processors that
have an tuple of first relation read the same
tuple of second relation to calculate a new
tuple of Cartesian product. Execution time is
of O(TS) where TS is the number of tuples of
relation S.

 for all k in parallel do 
 urm[k]:=list 2
 
 for j:=1 to TS do 
 prod[j]:= prod-cart(data[k] ,data[urm[k]])
 urm[k]:=urm[urm[k]]
 

6. Computing the join by selection from
product
The obvious way to compute join R ∞ S is to
compute product R x S and keeps the tuple
µν, where µ is in R and ν in S, only for those
tuples that have the same value for common
attributes in R and S.
6.1. Join using two indices
A better cost we obtain if exist an index on
attribute B in both relations. Presume that
both indices are clustering. We can find the
set of values of B by examining one of the
indices. We use the index with the smaller
size, assume that is the index on attribute B
of relation S and has the size IS,B. Using the
index on B of S we retrieve all value of B. It
is not necessary to find all values for B of R
because those absent from S not appear in the
result join. Once we have the set values of B
we can retrieve the needed tuples of relations
R and S. The algorithm is:

to each value b of B do
 join tuples of σB=b(R) with tuples of
σB=b(S)

7. Studying the communication in parallel
architectures
In database systems we keep information on
the extern support. To process it, we must
read and send the data to the processors.
Generally, the number of extern storage units
is less than the number of processors. First
strategy to get the data needed by processors
is to assure access for each processor to the
secondary storage. The main disadvantages
of this solution are:
-when we grow the number of processors ap-
pears a bottleneck in communication net-
work, because only one processor can access
an unit at once;
-the duration of input/output operations is big
and the same information can be read by
many processors at different m oment of time.

Economy Informatics, 2003

54

A second strategy is to dedicate processors to
each storage unit, the information of such
disk can be read only by the assigned proces-
sor and send to other processors to process.
The processors that realize the input/output
operation when are not asked to read or to
write can be added to the set of processors
that process data. The method of specialize
some processors in input/output operations
has the advantage that uses a simple man-
agement of data, and if the same information
must be sent to many processors needs only
one input operation, then information is sent
faster in intercommunication network to dif-
ferent destinations. In this case we mention
that the distribution of input data to proces-
sors is more flexible and is done in a shorter
time. As an example, assume that processor 1
reads the information. In the first step it
sends to the processor 2. Iterative, on each
step, all processors which obtained data send
it to other processors that not receive it yet.
In this way, on second step processor1 send
data to processor3, and processor 2 sends to
processor 4. Generally, we can say that if ex-
ist p processors that must receive the infor-
mation, this algorithm needs to distribute the
input data log(p) steps, not in p-1 steps if the
same processor sands information to all des-
tinations.
Another case that appears in parallel process-
ing is when data is distributed on a set of
processors and must communicate data they
hold to all other. At the end of communica-
tion all processors have the same data. To
solve this problem we must have in mind the
hardware structure of machine, thus the main
categories are: a ring structure and a hyper-
cube structure.
For ring structure we select a direction on
which we send data and each processor sends
its data to immediately adjacent processor on
this direction. On next stage each processor
continues to send data it received during the
previous stage.
If we have p processors connected in a ring,
to communicate data from each to all other
processors it needs (p-1) steps of communi-
cation.

Assume that we have p=2d processors and
the connecting structure of processors hype r-
cube. In this case we have d directions that
link processors.

0 1 0

0 0 0

0 1 1

0 0 1

1 1 0

1 0 0

1 1 1

1 0 1

0 1 0

0 0 0

0 1 1

0 0 1

1 1 0

1 0 0

1 1 1

1 0 1

0 1 0

0 0 0

0 1 1

0 0 1

1 1 0

1 0 0

1 1 1

1 0 1

Communication between processors in
hypercube

On first stage of algorithm we select a direc-
tion that splits the processors in two groups
of equal size, each processor in the first
group is paired with a processor in the sec-
ond. The paired processors exchange all data
they hold. After this stage we have p/2 pair
of processors that contain the same data. On
next stage we chose another direction that
split all processors in pairs that will commu-
nicate directly all data. This way, in each
stage each processor will double the amount
of data it contains. The total number of stage
for this method is d=log2(p).

Economy Informatics, 2003

55

8. The parallelism of input/output opera-
tions
The parallelism of input/output operations re-
fers to reducing the time needed to retrieve
relations from disk by partitioning the rela-
tions on multiple disks of storing informa-
tion. The most common form of data parti-
tioning in a parallel database environment is
horizontal partitioning. In this case, the tu-
ples of a relation are divided among many
disks, such that each tuple is entirely stored
on one disk. To exemplify several data parti-
tioning strategies we assume that there are n
disks, D0, D1...Dn-1, that can keep the in-
formation2,3.
Once a relation has been partitioned among
several disks, we can retrieve it by reading in
parallel, using all the disks. Similarly, a rela-
tion can be written to multiple disks in para l-
lel. The transfer rates for reading or writing
an entire relation are much faster with in-
put/output operations in parallel than in se-
quential operation. On the other hand, when
we use the partitioning of relations on many
disks we must take into account that exist
many access types to the database, in func-
tion of the amount of information needed to
retrieve:
- access to the entire relation by scanning all
the tuples
- locating a tuple or look up tuples that have
a specified value for a specific attribute
- locating all tuples that have for a given at-
tribute a value that lies within a specified
range
 First possible technique for partition-
ing the tuples on disk is to scan the relation
in any order and the each ith tuple is sent to
disk Di mod n. This scheme ensures an even
distribution of tuples across disks; each disk
has approximately the same number of tuples
as do the others. The method is useful for a p-
plications that need to read the entire relation
sequentially for each query. However the
queries that locating one tuple or tuples with
values that lied in a range are complicated to
process, since each of the n disks must be
used for the search.
Another technique that can be take into ac-
count is the hash partitioning. For this stra t-

egy we can choose one or more attributes of
the given relation as the partitioning attrib-
utes. We chose a hash function whose values
are in the range {0, 1,..., n-1}. Each tuple of
the original relation is sent to a disk find by
the result of hash function on the partitioning
attributes. If the hash function returns i, then
the tuple is placed on disk Di. This method is
best suited for queries that access a tuple
based on the partitioning attribute. We start
from the attribute values of needed tuple and
we apply the hash function to locate the disk
that keeps the tuple. Directing a query to a
single disk reduces the start -up cost of initiat-
ing a query on multiple disks, and leaves the
other disks free to process other queries. This
strategy is useful for seque ntial scans of the
entire relation. If the hash function is a good
randomising function, and the partitioning at-
tributes form a key of the relation, then the
number of tuples in each of the disks is ap-
proximately the same, without much vari-
ance. The time taken to scan the relation is
approximately 1/n of the time required to
scan the relation in a single disk system.
This strategy is not well suited for queries
that retrieve tuples on non-partitioning attrib-
utes, and or for queries that have as results a
range of tuples in relation, since hash func-
tions do not preserve proximity within a
range. Therefore, all the disks need to be
scanned for range queries to be answered.
The last proposal strategy is the range parti-
tioning. This method distributes contiguous
attribute -value ranges to each disk. It is cho-
sen a partitioning attribute A that is a parti-
tioning ve ctor. Let this vector [v0, v1,...,vn-2]
in increased order, such that if i < j, then vi <
vj. In this case the relation is partitioned as
follows. For each tuple of relation if the
value of attribute chosen as partitioning at-
tribute is less than v0, the tuple is placed on
disk D0. If the value is greater than vn-2, then
the tuple is placed on disk Dn-1. If the value
respect the relations vi ≤ x < vi+1 , then the tu-
ple is placed on disk Di+1. This partitioning
way is well suited for queries that locate a
tuple or a range of tuples on the partitioning
attribute. For queries that locate a record we
can consult the partitioning vector to locate

Economy Informatics, 2003

56

the disk where the tuple resides. For queries
that locate a range of tuples we consult the
partitioning vector to find the range of disks
on which the tuples may reside. In both
cases, the search is narrowed to exactly those
disks that might have any tuples of interest.
This feature is both an advantage and a dis-
advantage. The advantage is that, if there are
only a few tuples in the queried range, then
the query is typically sent to one disk, as op-
posed to all the disks. In this case other disks
can be used to answer other queries, range
partitioning results in higher throughput
while maintaining good response time. On
the other hand, if there are many tuples in the
queried range, many tuples have to be re-
trieved from a few disks, resulting in an in-
put/output bottleneck at those disks. In this
case the other two partitioning strategies
would engage all the disks for such queries,
giving a faster response time.
Into a computer system with many disks, the
numbers of disk on which the relation is par-
titioned depend on the number of tuples. If a
relation has a small number of tuples, that
can fit in a single block on disk; it is prefer-
able to keep all relation on a single disk. For
relations with a large number of tuples is
preferable to partitioning tuples across the all
disks. If relation has m disk blocks and the
system has n disks then the relation is stored
in min(m,n) disks.
A special attention must be give to the distr i-
bution of tuples when a relation is part i-
tioned, except for first method, because it can
appear a skew in distribution, with a high
percentage of tuples placed in some part i-
tions and fewer tuples in other partitions. The
skew can appear for two causes: attribute -
value skew and partition skew.
Attribute-value skew refers to the fact that
some values appear in the partitioning attrib-
utes of many tuples. All the tuples with the
same value for the partitioning attribute end
up in the same partition, resulting in skew.
Attribute-value skew can result in skewed
partitioning whether range partitioning or
hash partitioning is used’ since the partition
vector is not chosen carefully, or in the sec-
ond case the hash function is not good. Part i-

tion skew refers to the fact that there may be
load imbalance in the partitioning, even when
there is no attribute skew.
If the partitioning attributes form a key for
the relation, a good range -partitioning vector
can be constructed by means of sorting. The
relation is first sorted on the partitioning at-
tributes, then the relation is scanned in sorted
order. After e very 1/n of the relation has been
read, the value of the part itioning attribute of
the next tuple is added to the partition vector.
This way the partitioning on n disk is uni-
formly. The disadvantage of this method is
the extra input/output overhead needed for
the initial sort.

Bibliography
[1]. S. Aditedonl, R. Hull, V. Viann - Foun-
dations of databases - Adisson Wesley 1995;
[2]. D. De Witt, J. Cray - Parallel Database
Systems: The Future of High Performance
Database Systems - Communications of the
ACM Memory Multiprocessors Kluwer Aca-
demic Publisher;
[3]. D. Bell, J. Grimson - Distributed Data-
base System - Adisson Wesley;
[4]. E. F. Codd - The Relational Model for
Database Management - Adisson Wesley
[5]. P. Atseni, V. De Antonellis - Relational
Database Theory - Benjamin Cummings;
[6]. M.Petrescu, Proiectarea bazelor de date
- note de curs;
[7]. C.J.Date - An Introduction to Database
Systems - Adisson Wesley 1995;
[8]. C.J. Date, G. Darwen - A Guide to the
SQL Standard - Adisson Wesley 1993;
[9]. Sillerschatz, Korth, Sudarshan - Data-
base System Concepts - McGraw-Hill 4th
Edition;
[10]. Buchanan - D istributed Systems and
Networks – McGraw-Hill 2000;
[11]. G. Kapenekas - Transfer optimisation
for calculation of relational expression in
parallel systems and distributed databases -
Computer science The Proceedings of the 3-
rd International Symposium of Economic In-
formation - may 1997;

