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The aim of this paper is to illustrate the application of a common conceptual “framework 

like” for representing relationships between elements (agents, parts, individuals) inside of 

complex systems and to find out indicators helping us in analysis and control of the modelled 

system. The representation of relationships networks realizes analogies with the real networks 

and randomly generated networks in a permanent effort in using the models inspired by these 

to model social and economic systems. The goal is to find a proof graph representation of the 

network relationships inside of “social groups” (does no matter if is any small group, an en-

tire enterprise or organization or an entire social system) and to create the possibility to real-

ize the measurements regarding its internal and external complexity, neighbouring, attractors 

and clusterization, communication etc. The graph framework like developed here allows to 

represent the attractors and their basins as neighbouring relationships that are proof using 

two Euler formulas, one specific to graphs and another defined by Euler to use when cutting 

in facets a  sphere and adapted by us to check the graphs/ subgraphs completeness. 
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Introduction 

We consider that an objective reality is 

that in which about every item we can say 

that is true or not. A model of the world can 

be achieved using these true considered ele-

ments to mentally represent that external 

world and thus to define for that a formal 

model. Relations between elements of the 

world seen results from some cause. Concep-

tually that is deduced from the received sen-

sory data from this and from some form of 

coding these signals in the formal system. 

The formal system thus constructed is han-

dled by the mind through what we call infer-

ence.  

 
Fig. 1. The Representation of Agents as 

Transaction 

 

The simplest way to abstractly represent the 

components of a system is realized by the in-

put-output (I/O) diagram that describes a 

transition, which can be modelled mathemat-

ically as a functional p:I→O, where each 

processing box (block) is an Agent that real-

izes changes on the inputs to obtain outputs 

(Figure 1). 

The processes inside p(I) are combinations of 

perceptions, at receiving inputs, deliberating 

inside that processes the inputs and decide 

the actions to be taken, and action processes 

which are the result having effect on the en-

vironment and its internal status, and all 

those processes can consult the accumulated 

knowledge and maybe infer new knowledge. 

By abstracting the Agent with a system then 

I=X={X1, X2, …, Xn} are the possible inputs 

to the system from its environment and are 

processed by perception mechanisms, and 

O=Y={Y1, Y2, …,Ym} are the possible outputs 

of the system to its environment as actions to 

be done, represented at a moment in time. By 

considering the time the evolution of the sys-

tem will have all the results in time. The 

computation of all possible statuses denoted 

by (Σ) of the Agent in Figure 1 will be 

achieved by representing them as tuples of 

n+m values Σ=< X1, X2, …, Xn , Y1, Y2, …,Ym 

>  where Xi represents an input value 

),1( ni   and Yj an output value ),1( mj  .  

When we build an agent based system these 

behave as basic blocks of a software system 

1 
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that uses at least two technologies and con-

cepts used in practice, artificial intelligence 

(AI) and object-oriented (OO) distributed 

processing. The resulting software system 

must have the functionality of mapping in-

puts into outputs via pre-established pro-

cessing and is reactive by that it focuses on 

interactions between components as reaction/ 

response to stimulus from external world and 

not as traditional applications where im-

portant is the execution flux (this dictates al-

so the predefined reactions. In the “agents 

society” the agent have the properties of at-

omicity (it means is no decomposable, indi-

visible), consistency and isolation (is closed 

and is not affected by the environment 

changes) and, durability (it have a permanent 

effect without any possibility for “roll-back” 

processes). In this context we can see a sys-

tem with agents as a network of such interac-

tions and the relationship system do not rep-

resent nothing than a special case of transi-

tion of that kind. A way to understand natural 

and artificial systems, and also to model 

them, is represented by the relationships 

structure between its composing elements (or 

parts). In a relational system the outputs of 

on agent can be inputs for on or many other 

agents. The transformation denoted as p() is a 

functional component having the property it 

exists independently of material parts that 

makes it possible (of course the death/ dam-

aging of material part can result in incapacity 

of perception of the observer so as scientifi-

cally demonstrated recently for the human 

soul). The architecture of complex systems 

do not necessitate a central processor or co-

ordinator. The results of recent studies in 

neurobiology and cognitive psychology ex-

ploit the idea that the emergence of con-

sciousness and self consciousness are de-

pendent on the rate of production of “cells 

meta-assemblies” as neural results of self-

reflection. A provision mental state is under-

stood as a global system status that is caused 

by nonlinear local complex interactions of its 

parts, but cannot be reduced to such parties 

[2]. Topological measurements of these kind 

of complex networks showed a striking simi-

larity to their many other types of networks, 

but completely different and parts of the ob-

jective reality (such as Internet, electrical cir-

cuits food chains etc.). 

In the human systems the connectivity re-

flected by that a decision or an action of an 

individual (group, organization, institution, 

human system, etc.) will affect all other re-

lated individuals in the system. The effect do 

not have a uniform impact but vary directly 

with the state of each individual related at a 

time.  

The connectivity applies to the interrelation-

ship of individuals inside a system and also 

to the kinship human systems. The self-

organization in the context of human systems 

is taken to mean the group of individuals 

gathering together to perform a specific task. 

 

2 From Local Level to Global Level Or-

ganization 

Simulation of a multi-agent system of an or-

ganization must include both centralized 

method to determine the path to follow by 

the system and local methods, individual, to 

establish the trajectory movement of a single 

individual. 

The centralized methods and from top-to-

bottom are those in which the overall evalua-

tion function is used to select / decide the 

best state of the system in its current neigh-

bourhood. 

Local methods are focused on the individual 

level (a single agent, for example), they are 

decentralized and bottom-up (bottom-to-top). 

Through them the locally assessed function is 

used to determine the motion of a single 

agent (change of state variable assignment). 

The Agents are autonomous and decide their 

behaviour based on local assessment tools 

and given its own satisfaction or objective 

(hence all the agents at this level are labelled 

as selfish or greedy or short-sighted). 

The local evaluation function is the way used 

by system to self-organize in a state that is at 

the same time solution without having direct 

high-level control, and this is nothing else 

but the emergence of multi-agent systems. If 

the whole system can achieve an overall 

goal, that means that all the the agents follow 

their own aim, we can say that emergence 
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occurred, and the system is self-organized for 

a global target because here we have no cen-

tralized control. 

At the global level (full scale), the systems 

have complex properties and global rules of 

behaviour/ operation, and the approach to 

model their parts requires a simple decompo-

sition from top-to-bottom. At the basic level 

(the scale atomic element, non-decomposable 

in terms of the analysis/ modelling we want 

to make) there are many elements that have 

simple structures and properties and which 

are governed by simple rules. These parties, 

when we want to recompose the whole, suf-

fer a multitude of aggregation processes bot-

tom-up, and the resulting system possesses 

functions not found in basics and these are 

resulting from emergence 

To pass from a local coordination level to a 

global level of the organization, we must 

keep in mind that all interactions between 

agents inside the complex system will tend to 

a coherent, stable status, until agents adapts 

(mutually) to each other. This process accel-

erate generally due to the positive feed-back. 

 

3 Global Dynamics 

If we now consider the system as a whole - 

rather than individual agents - we can see 

that the system undergoes variation. Self-

organization means therefore that the system 

found an attractor, as for example a part of 

the state space where it can enter but cannot 

leave. In this respect, the attractor is a pre-

ferred region of global dynamics: surround-

ing attractor states (the attractor basin) are 

unstable and will eventually be lost and re-

placed by states inside the attractor  In non-

linear systems must keep in mind that the 

equation of evolution can provide solutions 

each of them being nothing but a pattern of 

behaviour. The attractor for such a system 

represents an equilibrium position that is 

unique and describes a time invariant (inde-

pendent of) situation. The equilibrium state 

becomes a universal attractor point. The sta-

bility is essentially determined by the re-

sponse of the system to perturbations.  

If X={X1, X2, …, Xn} is the multitude of sys-

tem inputs then we will consider them as 

evolving in time Xi(t) and the perturbation 

will be highlighted as a stable state of them 

to moment t to which added the correction, 

Xi(t)=Xi,s+xi(t), and the system’s equation 

can be defined as: 

 
𝑑𝑥𝑖

𝑑𝑡
= 𝐹𝑖({𝑋𝑖,𝑠 + 𝑥𝑖}, 𝜆) − 𝐹𝑖({𝑋𝑖,𝑠}, 𝜆), by 

which the time dynamics of system (
𝑑𝑥𝑖

𝑑𝑡
) is 

defined by laws of the changing rate of the 

system (𝐹𝑖) applied to the snapshot of the 

system stable state (𝑋𝑖,𝑠) to which is high-

lighted the perturbation (𝑥𝑖) as a correction 

(by incrementing or decrementing) of the in-

put and with the condition of considering the 

changing of the parameters (𝜆) by the exter-

nal world to the system (control parameters) 

[3].  

Self-organization means to search new attrac-

tors appearing when system is far away of 

equilibrium state. When in the same space 

exists more attractors each of them have its 

own attraction basin containing the state sets 

from which starting the system goes to a spe-

cific attractor.  

The coexistence of multiple attractors is 

common to systems and shows an adapted 

behaviour able to achieve regulating tasks. 

For systems based on informational message 

exchanges we can define the attractor as 

communication of information and interac-

tion of some kind with another agent with the 

goal to solve a certain type of problems (in 

the area of specialization of the agent). 

  
4 The Relationship Structure 

For being able to determine the regularities 

of such systems we must be able to define a 

graph G = (V, M), for the analysed system. 

We denote by V={ vi }, (i=1, 2, …, N) the 

vertices/ nodes multitude and by L ={ (vi, vj) 

} the multitude of links/ edges, it means the 

oriented graph connecting the ordered verti-

ces pairs, Λ= (V, L). The edge {i, j} is the 

line starting in the vertices i and ending in the 

vertices j. The directed edges are called arcs. 

Two vertices i and j are called adjacent if 

they connected by at least one edge. Each 

node i is characterized by its degree ki, de-

fined as the number of attached edges. Simi-

larly, we define the input-degree, ki
I, as the 
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number of input edges (links) and output-

degree, ki
O , as number of exiting edges, and 

with respect of formula ki= ki
I + ki

O. The sum 

of degrees of all nodes is an odd number. 

Depending on the existence/ inexistence of 

directionality in the graph edges this can be 

directed, respectively, undirected graph. 

Some graph G can be used to represent the 

structure of a system by considering the sys-

tem’s elements (parts) as nodes and the edges 

its interactions. If N is the number of vertices 

(nodes) and L is the number of links of the 

graph then the mean degree (Gm) is 

Gm=2L/N, because each edge is attached to 

two nodes. 

  
5 The Network Structure 

Conventionally a network structure is mod-

elled as a graph G which consists of a set of 

vertices (nodes) V and a set of edges (and/or 

arcs) M that we define as unordered pairs of 

distinct vertices. A path (way) in G from 

node vo to node ve is defined as an alternative 

sequence of nodes and edges (vo, m-1, v1, ... 

me, ve), where mi = {vi-1, vi} are the edges that 

realizes the connection to next nodes with re-

spect that no node can be traversed two or 

more times. Such a path is not necessarily 

unique. The length of the path is given by the 

number of its nodes. The degree of a node x 

is given by the number of edges containing x, 

for example the number of its neighbours: 

deg(x) = | {mϵM|xϵm}|= | {yϵV|{x, y} ϵ 

M}|=|σ{x}|, where the notation |A| defines 

the cardinality (the number of elements) of 

the set (multitude) A. If between two nodes vi 

and vj exists an edge then the nodes are 

called adjacent and the adjacency relation-

ship can be quantified by the term aii=1 and 

the not adjacent by the term aii=0, of the ad-

jacency matrix AN, N of the graph G, denoted 

by A(G).  

The degree of node i computed as sum of all 

inputs in the line i of the matrix and the total 

adjacency of a graph as sum over all ele-

ments of the matrix, such: 𝑎𝑖 =
∑ 𝑎𝑖𝑗

𝑁
𝑗=1 ;   𝐴(𝐺) = ∑ ∑ 𝑎𝑖𝑗

𝑁
𝑗=1

𝑁
𝑖=1 = ∑ 𝑎𝑖

𝑁
𝑖=1 . 

Equivalent, we can define deg(x) as the num-

ber of edges incident with the node x and we 

can consider the degree of inputs and out-

puts. The adjacency of undirected graphs 

(each edge is seen for both related nodes) is 

greater than those of directed (because here 

we consider only the link in the direction in-

dicated by arrow). 

 

 
Fig. 2. Nodes Neighbouring 

 

The mean degree of the node denoted by 

<ai> and the connectivity (Conn) are deter-

mined by formulas: < 𝑎𝑖 > =  
𝐴(𝐺)

𝑁
 ; 𝐶𝑜𝑛𝑛 =

𝐴(𝐺)

𝑁2 =
2𝑀

𝑁2   .  

The distance d(x, y) is the length of the short-

est path in G connecting the node x with node 

y. If a connection path between x and y don’ 

exist we set d(x, y) = . Thus the graph G is 

connected if and only if d(x, y) is finite, V x, 

y ϵ V (x≠y). The distance d(vo, ve) represents 

the less number of nodes that must be trav-

ersed to attain ve from vo.  This number is an 

integral if we don’t have weighted graphs. 

The mean length of a path (l) in a graph with 

N nodes is given by the formula: 𝑙 =
1

𝑁(𝑁−1)
∑ 𝑑(𝑣𝑖, 𝑣𝑗)∀𝑖,𝑗 . In a random graph the 

mean length l rise lower the rise of the graph 

magnitude. The neighbours of a node can be 

grouped on categories depending on the 

number of arcs needed by the path between 

them, namely primary neighbours (category 

zone 1, z1), secondary neighbours (category 

zone 2, z2), tertiary neighbours (category 

zone 3, z3), etc. The set of the neighbours of 

some node x is σ{x} = {yϵV|{x, y} ϵ M}. If 

we fix some node x then we can define its 

neighbours by grouping them depending on 
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the distance between them as primary, sec-

ondary, tertiary, … neighbours that will be 

included in the corresponding (suitable) 

neighbouring zones z1, z2, …, zn (Figure 3). 

The concentric circles with dotted line have 

the role to demarcate the neighbouring zones 

(the levels). This representation is suitable to 

highlight node adjacency and their degree.  

 

 
Fig. 3. The Node Neighbors, Edges and 

Facets 

 

To check and verify the neighbouring com-

pleteness of a specific level we propose using 

the Euler’s equation for spheres: if a surface 

of a sphere is cut into F facets with E edges 

and V nodes then we have the equality: V-

E+F=2. This equation can be proof by realiz-

ing the subgraph of the interest neighbouring 

order (as for example in Figure 2) and by 

adding to this fictitious edges between the 

nodes of the same level, to form the facets, as 

illustrated in Figure 3 by the red lines. To 

level 2 is defined a dashed fictitious broken 

line only for understanding reasons in the flat 

representation. 

In that way we define the facets as if they ob-

tained by cutting a sphere in which our graph 

can be inscribed. For each neighbouring zone 

we number the vertices (nodes), and the edg-

es and arcs and check by the formula. For 

given example in Figure 3 we have: 

 primary neighbors: (z1): V=1+6=7; 

E=6+6=12; F=7, hence V-E+F=7-

12+7=2 

 secondary (z2): V=1+6+8=15; 

E=6+6+16=28; F=6+8+1=15, hence V-

E+F=15-28+15=2 

We can us this representation to analyse the 

attractors corroborated by measurements 

about the clustering. This approach can be 

easy adapted to weighted graphs. We define 

deg(x) as a sum of the weights of all edges 

containing x and we define the path length as 

a sum of the weight associated to all edges in 

the path. According to Amaral et al. (in [4]) 

the distribution P(k) of  nodes grades k = 

deg(x) allows the identification of at least 

three types of networks structurally defined: 

single-scale, free networks (free) scale, and 

large-scale networks. The Euler’s theorem on 

graphs relates the number of nodes (vertices) 

V, edges E, independent cycles C and com-

ponents K of a graph as C=E-V+K.  To 

model social networks a great interest repre-

sented by the high degree of clustering given 

by that the friends of a member tend to be 

friends of all other members. Clustering is 

low for random graphs. The clustering coef-

ficient of node i, denoted by Ci, is defined as 

the ratio between the number of vertices Vi of  

primary neighbours of the node i and the 

maximum number of nodes of the completed 

subgraph formed starting with its primary 

neighbours, hence Vi(max)=ai(ai-1)/2, or 

𝐶𝑖 =
2𝐸𝑖

𝑎𝑖(𝑎𝑖−1)
 .  

When Ci is the mean on the entire network, 

we have:  𝐶 =
1

𝑁
∑ 𝐶𝑖 =

1

𝑁

𝑁
𝑖−1 ∑

2𝐸𝑖

𝑘𝑖(𝑘𝑖−1)

𝑁
𝑖=1  .  

Similarly, we can consider the secondary 

neighbours and determine the clustering co-

efficient and so on for other neighbouring 

level. 

  
6 Analysis and Simulation of Social and 

Economic Networks 

Any kind of social groups or the social/ eco-

nomic organizations can be represented as 

multigraph (one agent/ element in the group 

can have in the same time many roles in the 

same network and in relationship with the 

same other agent/ element denoted previous-

ly by nodes or vertices) and by associating to 

the nodes and edges of the obtained graph the 

probabilities corresponding to each property/ 

characteristic. We obtain probabilities matri-

ces (Figure 4). The multigraph will be de-

composed in simple graphs each one having 
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an associated probability matrix. The simple 

graph will be checked by using the two Eu-

ler’s formula introduced previously. 

By considering the time dimension and the 

multitude of relationships we obtain a three 

dimension massive composed by the proba-

bility matrix in which each panel represents a 

relationship/ association (suggested by label 

1) for which we can compute measurements 

as mutual entropy, normalized mutual entro-

py and marginal entropy or the proposed 

equivalents based on informational energy 

when we use excerpts. Once obtained the 

probability matrices they can be used as in-

puts for the models to commensurate the in-

ternal and external complexity (as shown in 

[5], [6]), for example. This model will be ex-

tended and adapted to realize the modelling 

of the relationships in the general model used 

to integrate the vary brain and psyche models 

realize and make cooperate them.  

To analyse the social and economic networks 

the working procedure proposed here in-

volves the following major steps: 

1) The knowledge and measurement of the 

network through formal relations stipu-

lated in laws, statutes, rules of organiza-

tion and functioning, organization, job 

descriptions etc.;  

2) The knowledge and measurement of the 

network through informal relationships 

using statistical tools and other investiga-

tions methods; 

3) The simulation and the generation of as-

sociated network of relations between 

members and finding the network param-

eters and mechanisms for forecasting and 

optimal control. 

 

 
Fig. 4. The Social System Modeled as 

Network and the Relationships Inside as 

Probability Matrix [5] 

Following is a GEXF (Graph Exchange 

XML Format, http://gexf.net/format/) de-

scription of an organizational graph using 

formal data retrieved at 

http://dice.ase.ro/?page_id=509 and informal 

data about the team groups relationships in-

side DICE organization: 

 LAP, PC, SCO, BDSI, and Info grouped 

together in Informatics group; 

 Cib_I, and Cib_II grouped together in 

Cybernetics group. 

The way the weight was obtained is based on 

the analysis of relationships between the 

members of each group which are not includ-

ed in this description (it is not subject of 

these paper). 

 
<?xml version="1.0" encoding="utf-8" ?> 
<gexf version="1.1" xmlns="http://www.gexf.net/1.1draft"  
  xmlns:viz="http://www.gexf.net/1.1draft/viz"  
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="http://www.w3.org/2001/XMLSchema-instance"> 
  <graph defaultedgetype="directed" mode="static"> 
    <nodes> <node id="0" label="DICE" /> 
      <node id="1" label="Informatics" ><nodes><node id="10" label="LAP"/> 
           <node id="11" label="PC"/><node id="12" label="SCO"/> 
           <node id="13" label="BDSI"/><node id="14" label="Info"></node></nodes>            
      </node><node id="2" label="Cybernetics"><nodes><node id="20" label="Cib_I"/> 
           <node id="21" label="Cib_II"/></nodes></node></nodes> 
    <edges> 
     <edge id="0"   source="1"   target="0"   type="directed" weight="7.86"/> 
     <edge id="1"   source="2"   target="0"   type="directed" weight="2.14"/>            
     <edge id="3"   source="10" target="1"   type="directed" weight="4.25"/>      
     <edge id="4"   source="11" target="1"   type="directed" weight="4.15"/> 
     <edge id="5"   source="12" target="1"   type="directed" weight="2.65"/>      
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      <edge id="6"   source="13" target="1"   type="directed" weight="3.25"/> 
     <edge id="7"   source="14" target="1"   type="directed" weight="5.10"/> 
     <edge id="8"   source="20" target="2"   type="directed" weight="3.85"/>      
     <edge id="9"   source="21" target="2"   type="directed" weight="3.85"/>    
     <edge id="10" source="10" target="11" type="mutual"   weight="-2.0"/> 
     <edge id="11" source="10" target="14" type="mutual"   weight="-2.0"/> 
     <edge id="12" source="11" target="14" type="mutual"   weight="2.00"/> 
     <edge id="13" source="13" target="14" type="mutual"   weight="-1.0"/> 
     <edge id="14" source="20" target="21" type="mutual"   weight="-3.0"/> 
     <edge id="15" source="10" target="12" type="mutual"   weight="1.00"/> 
     <edge id="16" source="10" target="13" type="mutual"   weight="1.00"/> 
   <edge id="17" source="1"   target="2"   type="mutual"   weight="1.00"/>  
   <edge id="18" source="13" target="11" type="mutual"   weight="-1.0"/>  
   <edge id="19" source="13" target="12" type="mutual"   weight="-1.0"/>  
   <edge id="20" source="12" target="11" type="mutual"   weight="-1.0"/>  
   <edge id="21" source="12" target="14" type="mutual"   weight="-1.0"/>  
    </edges> </graph></gexf> 
 

For the simulation and for generate the net-

work of relationships between members 

within a social group or between social 

groups we make call on the similarity of such 

networks with a variety of real networks, 

such as electricity networks, the Internet, etc. 

and models developed for them. In what fol-

lows are introduced the main features of the 

Waxman model, BA model [7] and a local-

ized model for dynamic networks [8] and [9]. 

The finding of the network parameters will 

be based on the concepts of the stochastic 

block model [10]. The models described here 

and the working procedure are intended to al-

low us to realize a reverse engineering like: 

we know the network and describe its rela-

tionships formally, considering them as ob-

tained by generating them, in that way ob-

taining the parameters, associated probabili-

ties and other measurements of the network 

which can be interpreted and used in other 

complex analysis, later on. The present ap-

proach is not expressly interested in generat-

ing such random networks, as the introduced 

models do, but rather in the understanding of 

existing social and economic networks and 

finding the parameters that would allow us to 

simulate. Once the mechanisms and its com-

ponents are known we can achieve its simu-

lations allows us to control the behaviour of 

the network, for example, in various situa-

tions. Because all these models based on a 

particular type network, the graph, we will 

realize first a brief introduction of graph no-

tions and concepts. 

 

7 Models Used to Randomly Generate 

Graphs 

In the following introduced five models each 

one selected due to its meaning and to be an 

example for a specific action. Thus the first 

model (called Waxman) is capable to gener-

ate an Internet like network, it means a net-

work with multiple paths between a pair of 

nodes. The second (called BA for brevity) is 

for self-organizing networks and the third 

(called The Localization Model) for localiza-

tion. The fourth model (called The Stochastic 

Block Model) is for related groups and per-

mit knowing the parameters to generate ran-

domly a graph for the relationships of that 

groups. The fifth model, in fact two proce-

dures called one parameter learning and the 

other one inferring the group assignment, 

allows to find out the parameters of graph 

governed by the Stochastic Block Model. 

The Waxman model is a stochastic model 

for generating a network structure similar to 

Internet by stipulating that the probability of 

connecting two nodes i and j from i to j is 

given by  𝑝(𝑖, 𝑗) =∝ 𝑒−𝑑/(𝛽𝐿) where ,  are 

positive (sub)unit values and 0<, ≤1, d is 

the Euclidean distance from vertices (node) i 

to vertices j, and L is the maximal distance 

between two vertices in the network. 

BA for brevity [9] is the proposed model of 

Brabasi and Abert as a model responsible for 
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self-organization characteristics in real sys-

tems. The model considers that initial net-

work has no isolated nodes and involves three 

major operations / actions that are performed 

at each time point as follows: 

1. Adding new links/ edges between exist-

ing nodes: with probability p, n nodes, 

n≤ no added to the existing ones. One end 

of the link of a new node is randomly 

chosen and the other end is chosen with 

the probability 𝑝(𝑘𝑖) =
𝑘𝑖+1

∑ (𝑘𝑙+1)𝑙
      (1) 

where ki is the degree of the node  i and 

𝑙 ∈ 𝐿 (links).   

2. Re-linking, by which m links are rebuilt 

with probability q: randomly is selected a 

node i and a link lij attached to node i is 

replaced by a new link lij’ connecting the 

node i with j’, with j’ chosen with the 

probability p(kj’). 

3. Incremental growth: a new node is add-

ed with probability (1-q-p) to a node hav-

ing m new links connected to the existing 

nodes in the network with probability 

p(ki). 

The probabilities used in the model satisfies 

the constraints: 0 ≤ p ≤ 1, 0 ≤ q ≤ 1 and  0 ≤ p 

+ q ≤ 1. 

The Localization Model [8] and [9] is de-

veloped for dynamic networks. The initial 

network have no nodes and lo links and is 

generated by the algorithm: 

1. From the existing network are selected V 

nodes and considered as „local-world” 

for the new added nodes; 

2. A new node is added to the network, at 

each time point, and connected to the n 

existing ones, in their local world deter-

mined by (1), with the probability 

:𝑝𝑙𝑜𝑐𝑎𝑙(𝑘𝑖) =
𝑁

𝑛𝑜+𝑡

𝑘𝑖

∑ 𝑘𝑗𝑗 𝑙𝑜𝑐𝑎𝑙
. 

The Stochastic Block Model [10] uses the 

following parameters: 

- g – the number of the groups; 

- {nu} – the fraction of total nodes N which 

belongs to every group 𝑢, with  1 ≤ 𝑢 ≤
𝑔; 

- An affinity matrix with dimensions gxg 

containing the probabilities puv, that 

stipulates the existence of an edge be-

tween the group u and group v. 

Randomly is generated a directed graph G on 

N nodes with the associated adjacency matrix 

A with aij=1 if an edge exists from i to j and 

aij=0 if contrary. Each node have an associat-

ed label 𝑒𝑖 ∈ {1, … , 𝑔} that indicating to 

which group belongs to. The labels chosen 

independently, where for each node the prob-

ability that the label be ei= u is nu. Between 

each pair of nodes <i, j> we include an edge 

from i to j with the probability 𝑝𝑒𝑖,𝑒𝑗
 , by set-

ting aij = 1 and aij = 0 with probability  

1 − 𝑝𝑒𝑖,𝑒𝑗
 . The self loops are ignored and 

consequently aii = 0. 

 

 

8 Finding the Parameters Values and La-

belling For an Existing Graph 

Now we suppose that the network was gener-

ated following the stochastic block model, 

just described in the previous paragraph, and 

we know the resulted graph G but we don’t 

know the values for the parameters g, nu, puv 

and for the labels ei. To solve that problem 

we apply two procedures defined as [10] pa-

rameter learning and inferring the group 

assignment. 

 

 

Fig. 5. The Graph Corresponding to the 

GEXF Description 

 

In order to be able inferring the group as-

signment an agreement is defined between 

the original assignment {ei} and its estimate 

{fi}. The probability that the stochastic block 

model generate the graph G having the adja-

cency matrix A, together with the group as-

sociations {fi}, and conditioned on the pa-

rameter 𝜃 = {𝑔, {𝑛𝑢}, {𝑝𝑢𝑣}} is 
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𝑃(𝐺, {𝑓𝑖}|𝜃) = ∏ [𝑝
𝑓𝑖′𝑓𝑗

𝑎𝑖𝑗 (1 −𝑖≠𝑗

𝑝𝑓𝑖,𝑓𝑗
)

1−𝑎𝑖𝑗

] ∏ 𝑛𝑓𝑖𝑖 , where the product is on 

the pairs 𝑖 < 𝑗 for the undirected case.  

The following is a small script in Py-

thon using the framework Networkx [11] that 

reads the GEXF description of the graph 

which is illustratively described and analysed 

from different points of views using the 

graph theory and indicators. The graph is 

shown visually in Figure 5. The output of 

this illustrative sequence of instructions is 

obtained as effect of numbered print() com-

mands. 

 

import networkx as nx; import numpy as np; import scipy as xsp 
import networkx.algorithms.approximation as alg; 
import networkx.algorithms.components.attracting as att 
import matplotlib.pyplot as plt; import sys 
path="D:\__myPython\\"; ret=raw_input("Type GEXF File Name: ") 
path+=ret; print "\r\n 0)- The requested file is: "+path 
fis=open(path,'rb'); bl=nx.read_gexf(path) 
print "\r\n 1)- List of nodes read in the external file\r\n",; print(list(bl)) 
print "\r\n 2)- The list of lines in the external file, line by line\r\n", 
for line in bl:;     print line 
V=nx.relabel_gexf_graph(bl); print "\r\n 3)- Renaming graph <bl> in V: \r\n",;print("\r\n 3.1)- 
Nodes in V: \r\n"),; print(V.nodes()); print("\r\n 3.2)- Edges in V: \r\n"),; print(V.edges()) 
fis.close() 
# Prepare canvas and drawing layout 
print("\r\n 4)- Prepare canvas and drawing layout \r\n"), 
nx.spectral_layout(V); nx.draw(V,with_labels=True); plt.show() 
# convert directed graph to an undirected copy for analysis 
UG=nx.DiGraph.to_undirected(V) 
print("\r\n 5)- Attractor components: \r\n"); print(list(att.attracting_components(V))) 
print("\r\n 6)- CLIQUES of different degrees \r\n") 
for i in range(2,len(UG),1):; print("%s %d %s\r\n"%("Cliques of ",i," or more nodes:")) 
    print(list(nx.k_clique_communities(UG, i))) 
# find attracting components subgraphs   
rg=att.attracting_component_subgraphs(V,copy=True) 
print("\r\n 7)- List of subgraphs of attracting components: \r\n") 
print list(list(rg)); for k in rg:;    print k, 
print("\r\n 8)- Triangle Components: \r\n"); print(nx.triangles(UG)) 
print("\r\n 9)- Tranzitivity Coefficient: \r\n"); print(nx.transitivity(UG)) 
print("\r\n 10)- Clustering Coefficients: \r\n"); print(nx.clustering(UG)) 
print("\r\n 11)- Average Clustering Coefficient: \r\n"); print(nx.average_clustering(UG)) 
print("\r\n 12)- Square Clustering Coefficients: \r\n"); print(nx.square_clustering(UG)) 
print("\r\n 13)- Min weighted dominating set: 
\r\n");print(alg.min_weighted_dominating_set(UG)) 
print("\r\n 14)- Cardinality min edge dominating set: 
\r\n");print(alg.min_edge_dominating_set(UG)) 
print("\r\n 15)- Maximum independent set: \r\n"); print(alg.maximum_independent_set(UG)) 
A=nx.adjacency_matrix(UG); print("\r\n16)- Adjacency matrix: "); print(A.todense()) 
print("\r\n 17)- Adjacency list: ") 
Al=nx.generate_adjlist(UG, delimiter=' '); for line in Al:;  print(line); print(list(Al)) 

 

The output of the previous instructions se-

quence is: 
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Type GEXF File Name: dice.gexf 
The requested file is: D:\__myPython\dice.gexf 
1)- List of nodes read in the external file ['11', '10', '13', '12', '20', '14', '1', '0', '2', '21'] 
2)- The list of lines in the external file, line by line 11     ……   21 
3)- Renaming graph <bl> in V:  
3.1)- Nodes in V: ['Info', 'SCO', 'DICE', 'Cib_I', 'Cib_II', 'PC', 'BDSI', 'Cybernetics', 'Informat-
ics', 'LAP'] 
3.2)- Edges in V: [('Info', 'Informatics'), ('Info', 'PC'), ('Info', 'BDSI'), ('Info', 'LAP'), ('Info', 
'SCO'), ('SCO', 'Informatics'), ('SCO', 'Info'), ('SCO', 'BDSI'), ('SCO', 'LAP'), ('SCO', 'PC'), 
('Cib_I', 'Cib_II'), ('Cib_I', 'Cybernetics'), ('Cib_II', 'Cybernetics'), ('Cib_II', 'Cib_I'), ('PC', 'In-
formatics'), ('PC', 'Info'), ('PC', 'BDSI'), ('PC', 'LAP'), ('PC', 'SCO'), ('BDSI', 'Informatics'), 
('BDSI', 'Info'), ('BDSI', 'SCO'), ('BDSI', 'LAP'), ('BDSI', 'PC'), ('Cybernetics', 'Informatics'), 
('Cybernetics', 'DICE'), ('Informatics', 'Cybernetics'), ('Informatics', 'DICE'), ('LAP', 'Infor-
matics'), ('LAP', 'PC'), ('LAP', 'BDSI'), ('LAP', 'Info'), ('LAP', 'SCO')] 
4)- Prepare canvas and drawing layout (result in Figure 5) 
5)- Attractor components: [['DICE']] 
6)- CLIQUES of different degrees  
Cliques of  2  or more nodes:[frozenset(['Info', 'SCO', 'DICE', 'Cib_I', 'Cib_II', 'PC', 'BDSI', 
'Cybernetics', 'Informatics', 'LAP'])] 
Cliques of  3  or more nodes:[frozenset(['Informatics', 'Cybernetics', 'DICE']), frozen-
set(['Cib_II', 'Cybernetics', 'Cib_I']), frozenset(['Info', 'PC', 'SCO', 'Informatics', 'LAP', 
'BDSI'])] 
Cliques of  4  or more nodes:[frozenset(['Info', 'PC', 'SCO', 'Informatics', 'LAP', 'BDSI'])] 
Cliques of  5  or more nodes:[frozenset(['Info', 'PC', 'SCO', 'Informatics', 'LAP', 'BDSI'])] 
Cliques of  6  or more nodes:[frozenset(['Info', 'PC', 'SCO', 'Informatics', 'LAP', 'BDSI'])] 
Cliques of  7  or more nodes:[] 
7)- List of subgraphs of attracting components:  
[<networkx.classes.digraph.DiGraph object at 0x0000000012F90668>] 
8)- Triangle Components: {'Info': 10, 'SCO': 10, 'DICE': 1, 'Cib_I': 1, 'Cib_II': 1, 'PC': 10, 
'BDSI': 10, 'Cybernetics': 2, 'Informatics': 11, 'LAP': 10} 
9)- Tranzitivity Coefficient: 0.825 
10)- Clustering Coefficients: {'Info': 1.0, 'SCO': 1.0, 'DICE': 1.0, 'Cib_I': 1.0, 'Cib_II': 1.0, 
'PC': 1.0, 'BDSI': 1.0, 'Cybernetics': 0.3333333333333333, 'Informatics': 
0.5238095238095238, 'LAP': 1.0} 
11)- Average Clustering Coefficient:  0.885714285714 
12)- Square Clustering Coefficients: {'Info': 1.0, 'SCO': 1.0, 'DICE': 0.0, 'Cib_I': 0.0, 'Cib_II': 
0.0, 'PC': 1.0, 'BDSI': 1.0, 'Cybernetics': 0.0, 'Informatics': 0.2727272727272727, 'LAP': 
1.0} 
13)- Min weighted dominating set: set(['Cib_II', 'BDSI', 'Cybernetics', 'Cib_I']) 
14)- Cardinality min edge dominating set: set([('Cib_I', 'Cib_II'), ('DICE', 'Cybernetics'), ('In-
fo', 'Informatics'), ('PC', 'LAP'), ('SCO', 'BDSI')]) 
15)- Maximum independent set: set(['LAP']) 
16)- Adjacency matrix:  
[[ 0.   -1.    0.    0.    0.    2.   -1.    0.    5.1  -2.  ] 
 [-1.    0.    0.    0.    0.   -1.   -1.    0.    2.65  1.  ] 
 [ 0.    0.    0.    0.    0.    0.    0.    2.14  7.86  0.  ] 
 [ 0.    0.    0.    0.   -3.    0.    0.    3.85  0.    0.  ] 
 [ 0.    0.    0.   -3.    0.    0.    0.    3.85  0.    0.  ] 
 [ 2.   -1.    0.    0.    0.    0.   -1.    0.    4.15 -2.  ] 
 [-1.   -1.    0.    0.    0.   -1.    0.    0.    3.25  1.  ] 
 [ 0.    0.    2.14  3.85  3.85  0.    0.    0.    1.    0.  ] 
 [ 5.1   2.65  7.86  0.    0.    4.15  3.25  1.    0.    4.25] 
 [-2.    1.    0.    0.    0.   -2.    1.    0.    4.25  0.  ]] 
17)- Adjacency list: Info Informatics PC BDSI LAP SCO … [] 
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9 Conclusions 

The paper is the result of many efforts (partly 

described in [5], [6], [12], [13]) in finding a 

pragmatic way to measure the external and 

internal complexity of a system, efforts and 

findings that are subjects to other articles of 

the authors, as referenced. Here we found 

several algorithms that allows to realize a re-

verse-engineering like operations on existing 

real or artificial networks and to determine 

the probabilities associated to different ele-

ments. The networks are studied and investi-

gated using existing methodologies and tools 

(such as the ones used in the analysis stage 

for information systems) and later described 

in terms of nodes and edges using an existing 

framework such as NetworkX, exemplified 

here, and then obtaining the figures for the 

measurements of interest. For large networks, 

where the usage of excerpts is inherent, the 

measurements for internal and external com-

plexity can use the versions of formulas 

based on informational energy. 
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